3,619 research outputs found

    Using an interactive water bottle to target fluid adherence in pediatric kidney transplant recipients: A pilot study

    Full text link
    Hydration is important post‐renal transplant to maintain adequate renal perfusion and graft function. Adherence to fluid recommendations is challenging given barriers to staying hydrated. There are no studies of adherence to fluid intake recommendations following pediatric renal transplant. Through this pilot study, we sought to determine whether the use of a commercially available interactive water bottle would lead to better adherence to recommended fluid intake and improved kidney functioning post‐transplant relative to standard of care. Participants included 32 youth ages 7–19 ≥1 month post‐kidney transplant randomized to the intervention (HydraCoach ® water bottle) or standard education control group. Laboratory records were reviewed for serum chemistries (Na, BUN , creatinine) at baseline and one‐month follow‐up, and participants recorded daily fluid intake for 28 days. Those in the intervention group were significantly more likely to meet or exceed their fluid target, but this did not translate into better kidney functioning. Participants in the intervention group largely reported satisfaction with the water bottle and were likely to continue its use. While an interactive water bottle providing real‐time feedback may be a promising intervention to help pediatric kidney transplant patients meet fluid goals, it did not appear to impact kidney function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109912/1/petr12385.pd

    Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure

    Full text link
    The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS) and, they respond to hG magnetic field strengths differently from the lines used in solar magnetometry. This peculiarity has been employed to measure magnetic field strengths in quiet Sun regions. However, the methods applied so far assume the magnetic field to be constant in the resolution element. The assumption is clearly insufficient to describe the complex quiet Sun magnetic fields, biasing the results of the measurements. We present the first syntheses of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how the MnI lines weaken with increasing field strength. In particular, kG magnetic concentrations produce NnI 5538 circular polarization signals (Stokes V) which can be up to two orders of magnitude smaller than the weak magnetic field approximation prediction. Consequently, (1) the polarization emerging from an atmosphere having weak and strong fields is biased towards the weak fields, and (2) HFS features characteristic of weak fields show up even when the magnetic flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to disappear the filling factor of kG fields has to be larger than the filling factor of sub-kG fields. Stokes V depends on magnetic field inclination according to the simple consine law. Atmospheres with unresolved velocities produce asymmetric line profiles, which cannot be reproduced by simple one-component model atmospheres. The uncertainty of the HFS constants do not limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure

    Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line

    Full text link
    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or non-magnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution with coherent scattering in magnetic fields. To model the wing polarization we apply an extended version of the technique based on the "last scattering approximation". This model is highly successful in reproducing the observed Stokes Q/IQ/I polarization (linear polarization parallel to the nearest solar limb), including the location of the wing polarization maxima and the minima around the Doppler core, but it fails to reproduce the observed spatial variations of the wing polarization in terms of magnetic field effects with frequency redistribution. This null result points in the direction of a non-magnetic origin in terms of local inhomogeneities (varying collisional depolarization, radiation-field anisotropies, and deviations from a plane-parallel atmospheric stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa

    Echinococcus metacestodes as laboratory models for the screening of drugs against cestodes and trematodes

    Get PDF
    Among the cestodes, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium represent the most dangerous parasites. Their larval stages cause the diseases cystic echinococcosis (CE), alveolar echincoccosis (AE) and cysticercosis, respectively, which exhibit considerable medical and veterinary health concerns with a profound economic impact. Others caused by other cestodes, such as species of the genera Mesocestoides and Hymenolepis, are relatively rare in humans. In this review, we will focus on E. granulosus and E. multilocularis metacestode laboratory models and will review the use of these models in the search for novel drugs that could be employed for chemotherapeutic treatment of echinococcosis. Clearly, improved therapeutic drugs are needed for the treatment of AE and CE, and this can only be achieved through the development of medium-to-high throughput screening approaches. The most recent achievements in the in vitro culture and genetic manipulation of E. multilocularis cells and metacestodes, and the accessability of the E. multilocularis genome and EST sequence information, have rendered the E. multilocularis model uniquely suited for studies on drug-efficacy and drug target identification. This could lead to the development of novel compounds for the use in chemotherapy against echinococcosis, and possibly against diseases caused by other cestodes, and potentially also trematode

    Automatic detection of limb prominences in 304 A EUV images

    Get PDF
    A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community
    corecore