308 research outputs found
First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches
We present first evidence for the so-called Head-Tail asymmetry signature of
neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the
1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils
induced by Weakly Interacting Massive Particle (WIMPs) but one where the
differential ionization is poorly understood. We show that the distribution of
recoil energies and directions induced here by Cf-252 neutrons matches well
that expected from massive WIMPs. The results open a powerful new means of
searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl
Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches
Understanding the ability to measure and discriminate particle events at the
lowest possible energy is an essential requirement in developing new
experiments to search for weakly interacting massive particle (WIMP) dark
matter. In this paper we detail an assessment of the potential sensitivity
below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure,
negative ion time projection chamber (NITPC), based on event-by-event track
reconstruction and calorimetry in the multiwire proportional chamber (MWPC)
readout. By application of a digital smoothing polynomial it is shown that the
detector is sensitive to sulfur and carbon recoils down to 2.9 and 1.9 keV
respectively, and 1.2 keV for electron induced events. The energy sensitivity
is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy
resolution is sufficient to identify the escape peak. The effect a lower energy
sensitivity on the WIMP exclusion limit is demonstrated. In addition to recoil
direction reconstruction for WIMP searches this sensitivity suggests new
prospects for applications also in KK axion searches
The DRIFT Dark Matter Experiments
The current status of the DRIFT (Directional Recoil Identification From
Tracks) experiment at Boulby Mine is presented, including the latest limits on
the WIMP spin-dependent cross-section from 1.5 kg days of running with a
mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with
ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale
directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
First Results from the DRIFT-IIa Dark Matter Detector
Data from the DRIFT-IIa directional dark matter experiment are presented,
collected during a near continuous 6 month running period. A detailed
calibration analysis comparing data from gamma-ray, x-ray and neutron sources
to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of
neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts,
designed to remove non-nuclear recoil events, are shown to reject 60Co
gamma-rays with a rejection factor of better than 8x10-6 for all energies above
threshold. An unexpected event population has been discovered and is shown here
to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the
central cathode. A limit on the flux of neutrons in the Boulby Underground
Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic
WIMP-nucleon cross-section results from the second science run of ZEPLIN-III
We report experimental upper limits on WIMP-nucleon elastic scattering cross
sections from the second science run of ZEPLIN-III at the Boulby Underground
Laboratory. A raw fiducial exposure of 1,344 kg.days was accrued over 319 days
of continuous operation between June 2010 and May 2011. A total of eight events
was observed in the signal acceptance region in the nuclear recoil energy range
7-29 keV, which is compatible with background expectations. This allows the
exclusion of the scalar cross-section above 4.8E-8 pb near 50 GeV/c^2 WIMP mass
with 90% confidence. Combined with data from the first run, this result
improves to 3.9E-8 pb. The corresponding WIMP-neutron spin-dependent
cross-section limit is 8.0E-3 pb. The ZEPLIN programme reaches thus its
conclusion at Boulby, having deployed and exploited successfully three liquid
xenon experiments of increasing reach
Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles
First results are presented from an analysis of data from the DRIFT-IIa and
DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha
particle tracks were reconstructed and used to characterise detector
performance--an important step towards optimising directional technology. The
drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based
on an analysis of naturally-occurring alpha-emitting background. The drift
velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the
analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction
and energy spectra were used to identify alpha particles from the decay of
Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218
progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For
Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.Comment: 27 pages, 12 figures, 5 tables. Submitted to Nuclear Instruments and
Methods in Physics Research, Section A. Subj-class: Instrumentation and
Detector
Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator
Plastic scintillators are widely used in industry, medicine and scientific
research, including nuclear and particle physics. Although one of their most
common applications is in neutron detection, experimental data on their
response to low-energy nuclear recoils are scarce. Here, the relative
scintillation efficiency for neutron-induced nuclear recoils in a
polystyrene-based plastic scintillator (UPS-923A) is presented, exploring
recoil energies between 125 keV and 850 keV. Monte Carlo simulations,
incorporating light collection efficiency and energy resolution effects, are
used to generate neutron scattering spectra which are matched to observed
distributions of scintillation signals to parameterise the energy-dependent
quenching factor. At energies above 300 keV the dependence is reasonably
described using the semi-empirical formulation of Birks and a kB factor of
(0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured
quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure
- …