2,831 research outputs found

    Quasi-phasematching of harmonic generation via multimode beating in waveguides

    Get PDF
    A new scheme for quasi-phasematching high harmonic generation (HHG) in gases is proposed. In this, the rapid variation of the axial intensity resulting from excitation of more than one mode of a waveguide is used to achieve quasi phasematching. Numerical modeling demonstrates enhancement of the harmonic signal over that achieved for a single coherence length by factors >10^4.Comment: 6 pages including 3 figure

    Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

    Full text link
    We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of >350 uJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of >190 uJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.Comment: 14 pages, 9 figures, This paper was published in Proceedings of SPIE 10088, Nonlinear Frequency Generation and Conversion: Materials and Devices XVI, doi 10.1117/12.225077

    Multi-Pulse Laser Wakefield Acceleration: A New Route to Efficient, High-Repetition-Rate Plasma Accelerators and High Flux Radiation Sources

    Get PDF
    Laser-driven plasma accelerators can generate accelerating gradients three orders of magnitude larger than radio-frequency accelerators and have achieved beam energies above 1 GeV in centimetre long stages. However, the pulse repetition rate and wall-plug efficiency of plasma accelerators is limited by the driving laser to less than approximately 1 Hz and 0.1% respectively. Here we investigate the prospects for exciting the plasma wave with trains of low-energy laser pulses rather than a single high-energy pulse. Resonantly exciting the wakefield in this way would enable the use of different technologies, such as fibre or thin-disc lasers, which are able to operate at multi-kilohertz pulse repetition rates and with wall-plug efficiencies two orders of magnitude higher than current laser systems. We outline the parameters of efficient, GeV-scale, 10-kHz plasma accelerators and show that they could drive compact X-ray sources with average photon fluxes comparable to those of third-generation light source but with significantly improved temporal resolution. Likewise FEL operation could be driven with comparable peak power but with significantly larger repetition rates than extant FELs

    Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    Get PDF
    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth

    Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    Get PDF
    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future work will require the validation of the developed SPM regional algorithm based on match-ups with field measurements, then the routine application to ocean colour satellite data in order to better estimate the fluxes and fate of SPM and POC delivered by the Mackenzie River to the Arctic Ocean

    Reconstructing nonlinear plasma wakefields using a generalized temporally encoded spectral shifting analysis

    Get PDF
    We generalize the temporally encoded spectral shifting (TESS) analysis for measuring plasma wakefields using spectral interferometry to dissimilar probe pulses of arbitrary spectral profile and to measuring nonlinear wakefields. We demonstrate that the Gaussian approximation used up until now results in a substantial miscalculation of the wakefield amplitude, by a factor of up to two. A method to accurately measure higher amplitude quasilinear and nonlinear wakefields is suggested, using an extension to the TESS procedure, and we place some limits on its accuracy in these regimes. These extensions and improvements to the analysis demonstrate its potential for rapid and accurate on-shot diagnosis of plasma wakefields, even at low plasma densities

    Effects of bed compression on protein separation on gel filtration chromatography at bench and pilot scale

    Get PDF
    BACKGROUND: Poorly packed chromatography columns are known to reduce drastically the column efficiency and produce broader peaks. Controlled bed compression has been suggested to be a useful approach for solving this problem. Here the relationship between column efficiency and resolution of protein separation are examined when preparative chromatography media were compressed using mechanical and hydrodynamic methods. Sepharose CL-6B, an agarose based size exclusion media was examined at bench and pilot scale. The asymmetry and height equivalent of a theoretical plate (HETP) was determined by using 2% v/v acetone, whereas the void volume and intraparticle porosity (ε p ) were estimated by using blue dextran. A protein mixture of ovalbumin (chicken), bovine serum albumin (BSA) and γ'- globulin (bovine) with molecular weights of 44, 67 and 158 kDa, respectively, were used as a 'model' separation challenge. RESULTS: Mechanical compression achieved a reduction in plate height for the column with a concomitant improvement in asymmetry. Furthermore, the theoretical plate height decreased significantly with mechanical compression resulting in a 40% improvement in purity compared with uncompressed columns at the most extreme conditions of compression used. CONCLUSION: The results suggest that the mechanical bed compression of Sepharose CL-6B can be used to improve the resolution of protein separation
    corecore