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We generalize the temporally encoded spectral shifting (TESS) analysis for measuring plasma

wakefields using spectral interferometry to dissimilar probe pulses of arbitrary spectral profile and to

measuring nonlinear wakefields. We demonstrate that the Gaussian approximation used up until now

results in a substantial miscalculation of the wakefield amplitude, by a factor of up to two. A method to

accurately measure higher amplitude quasilinear and nonlinear wakefields is suggested, using an extension

to the TESS procedure, and we place some limits on its accuracy in these regimes. These extensions and

improvements to the analysis demonstrate its potential for rapid and accurate on-shot diagnosis of plasma

wakefields, even at low plasma densities.

DOI: 10.1103/PhysRevAccelBeams.21.103501

I. INTRODUCTION

Acceleration of electrons by plasma wakefields has

demonstrated much potential, with laser-driven plasma

wakefield acceleration (LWFA) [1] producing electrons

on the GeV scale over interaction lengths of just a few

centimeters [2–4], while beam-driven wakefield acceler-

ation (PWFA) [5,6] has used longer, metre scale plasma

cells to boost electron energies by 10s of GeV [7,8]. In

order to assist the development of this new technology, it is

vital that sensitive, noninvasive diagnostics are developed

which are capable of characterizing the wakefield structure

and the electron beams they produced.

Measurement of the plasma wakefield is commonly

made through changes in the refractive index of the plasma,

determined by the effect on an optical probe through

techniques such as shadowgraphy [9] and photon accel-

eration [10]. An optical probe passing through the plasma

accumulates a phase change δϕ ∝ ne0
R

ðδne=ne0Þdl [11].

At high electron densities this phase change is large even

when integrating over short interaction lengths; with

electron densities of 1018 cm−3 and wake amplitudes of

δne=ne0 ∼ 0.1 the phase accumulated is of the order of one

radian after an interaction length of just 1 mm. However, as

LWFA experiments aim to increase the energy gain, the

length of the acceleration stages is increasing. To do this

one must increase the dephasing length Ldp ∝ n
−3

2

e by

moving to lower plasma densities, around 1017 cm−3

[12,13]. Transverse probing techniques such as shadowg-

raphy, with an interaction length on the scale of the plasma

wavelength λp ∝ n
−1

2

e , are no longer sufficiently sensitive, as

the total phase change varies as δϕ ∝ λpδne ∝ n
þ1

2

e .

Collective Thomson scattering is a useful diagnostic for

measuring waves in these low density plasmas (e.g., [14]).

However, when probing at an angle to the pump beam the

geometry must be carefully matched to the very shallow

scattering angle, which is dependent on the plasma density.

Furthermore, the scattered power, which varies with the

plasma wave amplitude as Ps ∝ ðδne=ne0Þ2n2e0, is

extremely small for weak plasma waves at low densities,

requiring intense probe pulses or sensitive detectors. It is

therefore more common in LWFA experiments to maximise

the scattering rate by using a copropagating geometry,

where the plasma wave is probed longitudinally (e.g., [15]).

In this situation, it becomes difficult when using ultrashort

broadband probe pulses to separate the scattered light from

the original probe spectrum, leaving the Stokes and anti-

Stokes spectral components poorly resolved and making it

impossible in practice to extract information about the

plasma wave. Using longer duration probe pulses would

overcome this difficulty, but at the cost of reducing the

temporal resolution.

Frequency domain interferometry (FDI) [16,17] and

holography (FDH) [18] are some of the most sensitive

techniques for longitudinally probing rapidly evolving

density structures with high temporal resolution. In these

methods, copropagating probe and reference pulses pass
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through an interaction region along the same path but are

separated in time, such that the probe accumulates a phase

change due to the density structure which the reference

pulse does not. The interaction region is imaged onto the

entrance slit of a spectrometer, giving spatial resolution of

the density structure in one dimension, while in the

spectrometer the separation between the probe and refer-

ence pulses leads to spectral interference, with a fringe

spacing dependent on the delay between the pulses. The

interference pattern contains information about the differ-

ence in phase shifts—and hence the local density of the

plasma—experienced by the probe and reference pulses.

In both FDI and FDH the probe pulse copropagates with

the plasma wakefield, and hence—assuming that these

waves propagate at the same speed—these measurements

can determine the electron density as a function of a local

space coordinate fixed in the frame of the plasma wake-

field. In FDI the probe pulse is shorter than the plasma

wavelength, and hence scanning the delay between the

probe and reference pulses allows the temporal behavior of

the plasma wave to be mapped out. In FDH the probe and

reference pulses are chirped and stretched, and hence the

temporal dependence of the wakefield can be determined,

in a single shot, from the spectral phase of the probe.

However, the phase reconstruction analysis process in FDH

requires several further measurements of the temporal and

spectral phases of both the probe and reference pulses in

order to distinguish the wakefield information from the

intrinsic phase of the pulses. Recently, the technique of

temporally encoded spectral shifting (TESS) [19] was

developed to extract information about phase modulation,

such as from plasma wakefields, without phase recon-

struction. The method uses the same experimental set up as

FDH but involves less computationally expensive analysis

and requires fewer reference measurements.

To date, however, the TESS analysis has been restricted

to the case of probe and reference pulses which have

identical Gaussian spectral profiles. Here we extend the

TESS method to the case of nonidentical probe and ref-

erence pulses of arbitrary spectral profile. We use exper-

imental results to demonstrate that under real conditions the

assumption of Gaussian probe and reference pulses can

lead to significant errors in the deduced wakefield. We also

extend the analysis to the case of nonlinear plasma wake-

fields and use simulations to show that the wakefield

amplitude and frequency can accurately be recovered for

quasilinear wakefields, and that the wakefield frequency

can still be recovered for strongly nonlinear wakefields.

II. ARBITRARY PROBE AND

REFERENCE PULSES

A. TESS in general

As described by Matlis et al. [19], a probe pulse

copropagating with a linear plasma wave is transformed

in a well-defined way. In the linear regime the plasma

wakefield is sinusoidal, and information about the wake-

field is encoded in the modulation of the spectrum of the

probe by an additional phase ϕwakeðζÞ ¼ ϕ1 sinðωp0ζÞ,
where ωp0 is the nonrelativistic plasma frequency, ζ ¼
τ − z=vg is a comoving time coordinate for the probe pulse,

which propagates at vg, and the amplitude of the phase is

proportional to the density amplitude of the plasma wave,

ϕ1 ¼ ðω 2

p0L=2ω0cÞðδne=ne0Þ. This leads to the transfor-

mations between the electric field of the probe before

entering the plasma, in temporal space EprðζÞ and in

spectral space EprðωÞ, and after leaving the plasma,

E0
prðζÞ and E0

prðωÞ, shown below:

E0
prðζÞ ¼ EprðζÞeiϕ1 sinðωp0ζ

¼ EprðζÞ
X

∞

k¼−∞

Jkðϕ1Þeikωp0ζ: ð1Þ

E0
prðωÞ ¼

1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

EprðζÞeiϕwakeðζÞe−iωζdζ

¼
X

∞

k¼−∞

Jkðϕ1ÞEprðω − kωp0Þ; ð2Þ

where JnðxÞ is the nth order Bessel function of the

first kind.

From Eq. (2) we see that after it interacts with the plasma

wave the spectrum of the transmitted probe pulse is a

superposition of the original spectrum of the incident pulse

and copies shifted in frequency by multiples of the plasma

frequency, as shown in the cartoon in Fig. 1(a). The

reference, meanwhile, remains unchanged, copropagating

with the probe a time Δt earlier:

E0
rðζÞ ¼ Erðζ þ ΔtÞ: ð3Þ

E0
rðωÞ ¼

1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

Erðζ þ ΔtÞe−iωζdζ

¼ ErðωÞeþiωΔt: ð4Þ

The two pulses interfere within the spectrometer to create

a spectral interferogram SðωÞ ¼ jE0
prðωÞj2 þ jE0

rðωÞj2þ
E0
prðωÞE0�

r ðωÞ þ c:c:, where c.c. denotes the complex con-

jugate of the previous term. In FDH the interferogram is

analyzed as follows: First, one uses an inverse Fourier

transform to the temporal domain to isolate the interference

term, E0
prðωÞE0�

r ðωÞ, as described in Takeda et al. [20],

before Fourier transforming back to the spectral domain.

Next, one removes information about the reference pulse to

recover the electric field of the transmitted probe, E0
prðωÞ.

From this, another inverse Fourier transform gives E0
prðζÞ;

removing the temporal phase of the probe and extracting

the phase due to the wakefield one obtains ϕwakeðζÞ.
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In TESS, however, it is only necessary to make the first inverse Fourier transform to the temporal domain. This yields a

TESS signal of the form shown schematically in Fig. 1(b). The form of the signal is given by [19]:

sðtÞ ¼ 1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

SðωÞeþiωtdω

¼ Hr;rðt; 0Þ þ
X

∞

m¼−∞

gmðϕ1; t;ωp0ÞHpr;prðt; mωp0Þ þ
X

∞

k¼−∞

Jkðϕ1Þ½Hpr;rðt − Δt; kωp0Þ þH�
pr;rð−t − Δt; kωp0Þ� ð5Þ

where Ha;bðt;ΩÞ≡
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

Eaðω − ΩÞE�
bðωÞeiωtdω ð6Þ

and gmðϕ1; t;ΩÞ≡
X

∞

n¼−∞

Jnðϕ1ÞJmþnðϕ1ÞeinΩt ð7Þ

As we discuss below, the TESS signal comprises of a set

of peaks, with each term Ha;bðt;ΩÞ contributing a peak at a
different time. The amplitudes and locations of these peaks

contain information about the wakefield. A TESS signal

can be calculated at several different spatial positions,

giving spatial profiles of the wakefield’s amplitude and

frequency.

B. Non-Gaussian pulses

So far we have made no assumptions about the probe and

reference pulses, other than that they have well-behaved

Fourier transforms. In previous work [19] it was assumed

that the incident probe and reference pulses are identical

Gaussian pulses with no 3rd or higher order spectral phase:

EprðωÞ ¼ ErðωÞ ¼ E0ðωÞ≡ Ae−
1

2
ð1þiσÞðω−ω0

δω
Þ2 . Here we

remove the restriction on the spectral shape of the probe

and reference pulses, whilst retaining the approximation

that third and higher order phases can be neglected. Hence

we may write:

EaðωÞ ¼ jEaðωÞj exp
�

i½ψ ð0Þ
a þ ψ

ð1Þ
a ðω − ω0Þ

þ 1

2
ψ
ð2Þ
a ðω − ω0Þ2 þ � � ��

�

; ð8Þ

where the first order spectral phase ψ
ð1Þ
a is the group delay,

and the second order spectral phase ψ
ð2Þ
a is the group delay

dispersion (GDD). The group delay describes the arrival

time of the central frequency ω0 before the delay Δt has
been introduced; for our incident probe and reference

pulses EprðζÞ and ErðζÞ we have defined ψ
ð1Þ
pr ¼ ψ

ð1Þ
r

without loss of generality.

It can be shown (see Appendix) that, if the difference in

the 2nd order spectral phase of the probe and reference

pulses is sufficiently small, ψ
ð2Þ
r ≈ ψ

ð2Þ
pr ≈ ψ ð2Þ, the function

Hpr;rðt;ΩÞ peaks at tΩ ¼ ψ ð2Þ
Ωþ ψ

ð1Þ
r − ψ

ð1Þ
pr ¼ ψ ð2Þ

Ω, at

which time the peak amplitude is described by a cross-

correlation:

jHpr;rðtΩ;ΩÞj ¼
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEprðω − ΩÞjjErðωÞjdω ð9Þ

From Eqs. (5) and (9) we see that in general the TESS

signal is composed of the DC peak at t ¼ 0, the two familiar

delay sidebands at t0 ¼ �Δt, and a series of equally spaced
satellites either side of the delay sidebands,with the kth order

satellite of the t0 ¼ Δt peak located at tk ¼ Δtþ kωp0ψ
ð2Þ,

see Fig. 1. This gives us a measurement of the wakefield

frequency, using ωp0 ¼ ðtk − ΔtÞ=kψ ð2Þ, and hence an

estimate of the electron density of the plasma, as

ne0 ¼ ωp0meϵ0=e
2.

Additionally, the height of the satellite relative to that of

the sideband is described by:

(a) (b)

FIG. 1. (a) Frequency-time domain plots of the reference pulse,

and the probe pulse after it has interacted with a sinusoidal

plasma wave of frequency ωp0. Modulation of the probe pulse

generates copies of the incident probe pulse, spectrally shifted by

multiples of ωp0. (b) The TESS signal, obtained by a Fourier

transform of the recorded spectrum of the transmitted probe and

reference pulses. The temporal separation of the probe and

reference pulses yields a DC term at t ¼ 0 and a sideband at

t ¼ Δt, and modulation of the probe causes a series of satellites

(lighter blue) separated from the sideband by multiples

of ωp0ψ
ð2Þ.
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rk ¼
Jkðϕ1Þ
J0ðϕ1Þ

F ðkωp0Þ; ð10Þ

where the spectral overlap factor F is given by:

F ðΩÞ≡
R

∞
−∞

jEprðω − ΩÞjjErðωÞjdω
R

∞
−∞

jEprðωÞjjErðωÞjdω

¼
R

∞
−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iprðω −ΩÞIrðωÞ
p

dω
R

∞
−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IprðωÞIrðωÞ
p

dω
; ð11Þ

where Ipr and Ir are the spectral intensities of the input

probe and reference pulses. For probe and reference pulses

of a bandwidth δω, we would expect this spectral overlap

factor to become important when ωp0 ≳ δω.

For the case of identical Gaussian probe and reference

pulses with
ffiffiffiffiffiffiffiffiffi

IðωÞ
p

¼ jE0ðωÞj ¼ Ae−
1

2
ðω−ω0

δω
Þ2 we find:

fðkΩÞ≡ FGaussðkΩÞ ¼ exp

�

−

�

1

4

kΩ

δω

�

2
�

; ð12Þ

which agrees with the result found by Matlis et al. [19].

Equation (12) can lead to inaccurate determination of the

wakefield amplitude for practical probe and reference pulses.

For example, in recent experiments [21] we measured

low amplitude wakefields δne=ne0 ∼ 1% using frequency

doubled probe and reference pulses, the spectra of which

were far from Gaussian, as shown in Fig. 2(a). The spectrum

has a bandwidth of approximately δω ≈ 40 rad ps−1 and

therefore a density of only ne ≈ 0.5 × 1018 cm−3 produces a

plasma frequency ωp0 ≈ δω. As a consequence, even at low

electron densities the Gaussian approximationFGaussðkωp0Þ
used by Matlis et al. [19] diverges from the real overlap

factor, making it unsuitable for accurately measuring wake-

field amplitudes when the probe spectrum is non-Gaussian.

For example, at a density of ne ≈ 2.5 × 1018 cm−3, the

Gaussian approximation reduced the calculated wakefield

amplitude by a factor of approximately two.

Accurately measuring the wakefield frequency and

amplitude over a range of experimental conditions can

allow us to produce a resonance curve of wakefield

amplitude with plasma frequency. In our recent experi-

ments [21] this allowed us to infer information about the

laser pulse which is driving the wakefield. For instance, for

laser drivers with a0 ≪ 1 we expect the wakefield ampli-

tude to increase linearly with the intensity of the drive

pulse. Measuring violations of this trend would lead us to

infer both an intense laser driver, with a0 ∼ 1, and a non-

linear wakefield. We discuss estimating the wakefield

amplitude under these conditions in Sec. III.

C. Nonequal GDDs

In general, the probe and reference pulses will have

different GDDs; this difference, which is usually small,

arises from differences in the materials present in their

optical paths. Whereas the previous work by Matlis et al.

[19] has ignored these effects, they may cause changes in

the locations of the satellites, and hence on the deduced

plasma frequency. Using the Fourier shift theorem it can be

shown that Hpr;rðt; kωp0Þ ¼ H�
r;prð−t;−kωp0Þeikωp0t and the

satellite peak location must depend equally on the probe

and reference pulses. We show in the Appendix that for the

case of nonidentical Gaussian pulses the satellite peak is

located at t ¼ Δtþ kωp0ψ
ð2Þ
eff , where ψ

ð2Þ
eff is the mean of the

probe and reference GDDs, weighted by the square of their

bandwidths:

ψ
ð2Þ
eff ¼

δω2
prψ

ð2Þ
pr þ δω2

rψ
ð2Þ
r

δω2
pr þ δω2

r

ð13Þ

In the case where probe and reference pulses have the

same bandwidth δωpr ≈ δωr, this reduces to the arithmetic

(a) (b) (c)

FIG. 2. (a) The measured spectrum of the probe pulse in a recent experiment [21] (solid red line) and a Gaussian fit to it (dashed black

line). (b) Comparison of the spectral overlap factors F ðωp0Þ (solid, red) and FGaussðωp0Þ (dashed, black) evaluated at the first order

TESS peak as a function of gas cell pressure, assuming that the hydrogen gas was fully ionized by the driving laser. (c) Deduced

wakefield amplitude as a function of cell pressure assuming spectral overlap factors F ðωp0Þ (solid, red) and fðωp0Þ (dashed, black),
showing the mismeasurement of an example wakefield amplitude when assuming a Gaussian profile.
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mean GDD ψ
ð2Þ
eff ¼ 1

2
½ψ ð2Þ

pr þ ψ
ð2Þ
r �. In previous experimental

work [21] we measured a difference in GDDs of around

1000 fs2 compared to ψ
ð2Þ
eff ≈ 20; 000 fs2. In this case, using

the probe GDD alone and assuming ψ
ð2Þ
eff ≈ ψ

ð2Þ
pr would

result in an error in the calculated plasma frequency of

around 2%.

III. NONLINEAR WAKEFIELDS

A. Quasilinear wakefields

We now consider the extension of TESS to the charac-

terization of nonlinear plasma wakefields, where electrons

in the plasma wave have relativistic velocities. Following

Akhiezer and Noble [22,23], in the quasilinear regime the

plasma wave amplitude can be described by the maximum

electron velocity through βm ¼ ve;max=c, where δne=ne0 ¼
β=ð1 − βÞ and jβj ≤ βm. The plasma waves are linear in the

regime βm ≪ 1. Figure 3(a) shows the calculated relative

wave amplitude δne=ne0 as a function of the comoving

coordinate ζ for two values of βm at a plasma density of

ne0 ¼ 1018 cm−3. It can be seen that as βm increases,

the wave becomes more sharply peaked and the period of

the plasma wave is increased as τp ¼
ffiffiffi

γ̄
p

τp0, where γ̄ is the

normal relativistic factor averaged over one cycle.

As the wakefield remains both periodic, with a period τp,

and continuous, the phase change acquired by the probe

can be decomposed into a linear combination of harmonics:

ϕwakeðζÞ ≈
P

N
n¼1

ϕn sinðnωpζ þ θnÞ, where ωp ¼ ωp0=
ffiffiffi

γ̄
p

and N can be arbitrarily large. Figure 3(b) shows the

amplitudes ϕn of the first five harmonics resulting from a

400 nm probe co-propagating over a distance of 1 mm with

the plasma waves shown in Fig. 3(a). Whereas at βm ¼ 0.3

the phase change is dominated by the fundamental n ¼ 1,

as βm increases the wave becomes more nonlinear and the

higher harmonics at n > 1 become relatively more signifi-

cant. The Jacobi-Anger expansion can be applied to each

of these N harmonics as in the case of a linear wakefield,

and so the electric field of the transmitted probe can be

expanded as,

E0
prðζÞ ¼ EprðζÞ

Y

N

n¼1

eiϕn sinðnωpζþθnÞ

¼ EprðζÞ
Y

N

n¼1

�

X

∞

kn¼−∞

JknðϕnÞeiknðnωpζþθnÞ
�

¼ EprðζÞ
X

∞

k1¼−∞

…

X

∞

kN¼−∞

Jk1ðϕ1Þ…JkN ðϕNÞe
i

	

P

N

n¼1
knn




ωpζ
ei
P

N

n¼1
knθn ð14Þ

E0
prðωÞ ¼

X

∞

k1¼−∞

…

X

∞

kN¼−∞

Jk1ðϕ1Þ…JkN ðϕNÞei
P

N

n¼1
knθnEpr

�

ω −
X

N

n¼1

knnωp

�

: ð15Þ

(a) (b) (c)

FIG. 3. (a) Calculated temporal behaviour of the relative density of quasi-linear plasma waves for βm ¼ 0.3 (blue) and βm ¼ 0.6 (red).

(b) Harmonic amplitudes ϕn of the phase shift experienced by a 400 nm probe pulse copropagating for 1 mm with the plasma waves

shown in (a). (c) Calculated TESS signals for the plasma waves in (a) and the phase shifts shown in (b) at βm ¼ 0.3 (blue)

and βm ¼ 0.6 (red).
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The transmitted probe spectrum therefore contains con-
tributions from theN (in principle, infinite) harmonics, each
of which in turn produces an infinite set of carrier waves,
labelled by the integers kn, which can be both positive or
negative. By truncating the phase expansion at finite N,
each term is uniquely labeled with a set of N different
indices, from k1 to kN . However, as jknj increases, the
amplitude of the carrier wave decreases since jJknðϕnÞj → 0

as jknj → ∞. For any finite ϕn the carrier wave expansion
can therefore be terminated at a finite value of jknj ≤ K. The
larger the phase ϕn, the larger K must be for accurate

reconstruction of the wakefield. Every term in this expan-

sion can therefore be described with a point on a discreteN-

dimensional grid with 2K þ 1 points on each side, although

both K and N can be arbitrarily large; the point is described

by k ¼ ðk1; k2; k3; k4;…; kNÞ. There are ð2K þ 1ÞN such

points in the grid. The reference pulse is the same as before,

and the interference between the two gives rise to a TESS

signal.We shall consider only the term corresponding to the

peaks near t ¼ Δt, which arises from the interference term

E0
prðωÞE0�

r ðωÞ, i.e.,

sðtÞ ≈ � � � þ
X

K

k1¼−K

…

X

K

kN¼−K

Jk1ðϕ1Þ…JkN ðϕNÞei
P

N

n¼1
knθnHpr;r

�

t − Δt;
X

N

n¼1

knnωp

�

þ � � �

¼ � � � þ
X

K

κ¼−K

Zκðfϕng; fθngÞHpr;rðt − Δt; κωpÞ þ � � � ð16Þ

where Zκðfϕng; fθngÞ ¼
X

k∈Sκ

Jk1ðϕ1Þ…JkN ðϕNÞei
P

N

n¼1
knθn ð17Þ

for a subset Sκ ¼
�

ðk1;…; kNÞ∶
X

N

n¼1

nkn ¼ κ

�

ð18Þ

In Eq. (16) we have divided the set of points k in the grid

into subsets, each labeled with the new integer κ, which, as

seen in Eq. (16), is the effective harmonic order. Each

of these subsets Sκ comprises those points from the

originalN dimensional grid which also lie upon a particular

N − 1 dimensional plane, which is perpendicular to the

vector v ¼ ð1; 2; 3;…; NÞ. The new label κ is then the

plane number, κ ¼ v · k, which can be both positive or

negative. For instance, the κ ¼ 2 subset contains points

k ¼ ð2; 0; 0; 0;…Þ, ð0; 1; 0; 0;…Þ, ð−1; 0; 1; 0;…Þ and

ð2;−2; 0; 1;…Þ, amongst many others. To completely

span the original grid we must consider all planes up

to jκj ≤ κmax ¼ K þ 2K þ � � � þ NK ¼ KNðN þ 1Þ=2.
The TESS signal sðtÞ now looks very similar to that for a

linear wakefield, with the substitution of a new complex

number Zκ, which includes contributions from all of the

wakefield’s frequency components, instead of the Bessel

function Jk, which only accounts for the fundamental

frequency. The crucial part of this signal again consists

of a sideband peak at t0 ¼ Δt and a series of satellite peaks

spaced around it at times tκ ¼ Δtþ κψ ð2Þωp. For a quasi-

linear wakefield, however, each peak will contain contri-

butions from many different frequency components; the κth

order peak will have contributions from all terms in Sκ,

including all harmonics such that
P

N
n¼1

nkn ¼ κ.

Figure 3(c) shows the TESS satellites resulting from the

phase shifts shown in Fig. 3(b), for quasilinear plasma

waves with βm ¼ 0.3 and βm ¼ 0.6. While the relative

heights of the satellite peaks are slightly greater for

βm ¼ 0.6, the form of the signal is largely unchanged

from that of a linear wakefield. The satellites are located

slightly closer to the origin because the plasma frequency is

reduced as ωp ¼ ωp0=
ffiffiffi

γ̄
p

. The satellite peak heights,

relative to the sideband, are now:

rκ ¼
�

�

�

�

Zκðfϕng; fθngÞ
Z0ðfϕng; fθngÞ

�

�

�

�

F ðκωpÞ: ð19Þ

In general, the wakefield is difficult to recover from

measured rκ, as every combination of ðk1; k2;…; kNÞ ∈ Sκ
must be accounted for. This set, the points of an N
dimensional grid of side length 2K þ 1 which also lie

on the (N − 1) dimensional plane κ ¼ v · k, contains on the

order of jSκj ∼ ð2K þ 1ÞðN−1Þ members and the contribu-

tion of each must be calculated. For example, limiting the

set to N ¼ 5, K ¼ 5 gives jS2j ¼ 2583 solutions to κ ¼ 2.

Once the sets S0 and Sκ have been found for each of N
satellite peaks, obtaining the wakefield profile from the

measured peak heights would involve measuring the

amplitude and phase of N satellite peaks, yielding 2N
nonlinear simultaneous equations, and solving for the 2N
unknowns fϕng and fθng. In practice, however, it is

difficult to measure more than a few satellite peaks since

the overlap factor F ðκωpÞ becomes small as κ increases.

ARRAN, MATLIS, WALCZAK, and HOOKER PHYS. REV. ACCEL. BEAMS 21, 103501 (2018)

103501-6



Given a set of experimental parameters and a particular
model of the wake, such as Akhiezer and Noble quasilinear
plasma waves, it is nonetheless possible to tackle this
problem numerically by calculating the values fϕng and
fθng for a range of wakefield amplitudes. Instead of 2N
unknowns the wakefield is described by a single amplitude
βm, and using fϕng and fθng, a lookup table of ratios
jZκ=Z0j against wakefield amplitudes βm can be con-
structed. Comparing measured ratios to these values then
yields the wakefield amplitudes. In the following section
we demonstrate this approach for simulated data.

1. Simulated TESS analysis

In order to demonstrate this procedure, the TESS signals,

similar to those shown in Fig. 3(c), were calculated for

simulated plasma waves with maximum electron velocity βm
of up to 0.9, using the same probe frequency, plasma density

and interaction length as above. From these TESS signals the

peak ratios r1 and r2 were extracted and divided by the

overlap factors to calculate jZ1=Z0j and jZ2=Z0j. These
simulated ratios were compared to expectations from

Eq. (17), where Z0, Z1, and Z2 were calculated for cold

1D plasma waves as above. In all cases we limited the Bessel

expansion to third order, jknj ≤ 3 as J4ðxÞ=J3ðxÞ < 0.13 for

x < 1. We considered three possible analyses, with trunca-

tion of the harmonic expansion at: N ¼ 1, corresponding to

assumption of a linear wakefield; N ¼ 5, for which there are

around jSκj ≈ 400 combinations; and N ¼ 10, for which

jSκj ≈ 3million. The results, shown in Fig. 4(a), demonstrate

that as wakefield amplitude increases more harmonics must

be accounted for in Eq. (17) in order to correctly calculate

the ratios jZ1=Z0j and jZ2=Z0j. Whereas the linear approxi-

mation N ¼ 1 fails for βm > 0.1, using N ¼ 10 the simu-

lations match the calculations very closely up to a wakefield

amplitude of around βm ≈ 0.8.

Next, these ratios were used to calculate lookup tables of

jZ1=Z0j and jZ2=Z0j over different wakefield amplitudes;

each value of N gave a different lookup table. The wake-

field amplitude of the simulated TESS spectra was then

estimated by using these lookup tables and the known

interaction length and wakefield frequency. For each

simulated TESS spectra we chose the value of βm which

minimized the distance (or 2-norm) between the measured

ratios and the ratios on the lookup table. For N ¼ 1 we

ignored Z2 and followed the same procedure as for linear

plasma waves. As shown in Fig. 4(b), the linear assumption

used in Sec. II works surprisingly well for nonlinear plasma

waves, and the accuracy can be increased by further

expanding N. The linear TESS procedure, N ¼ 1, begins

to diverge from the true value at wakefield amplitudes of

βm ≈ 0.2, or δne=ne0 ≈ 25%, and subsequently overesti-

mates the wakefield amplitude by around 10% of the true

value. Using the N ¼ 5 expansion, however, accurately

measures wakefield amplitudes up to βm ≈ 0.6, and the

expansion to N ¼ 10 only fails at βm > 0.8.

There is therefore a trade off between accuracy and

computation time. We have demonstrated that an expansion

to the 10th harmonic of the plasma frequency allows us to

accurately calculate the amplitude of a quasilinear wake-

field up to βm ≈ 0.8. However, it requires calculating the

sum of around 3 million components for each satellite peak

at each wakefield amplitude, which takes several minutes

on a desktop computer. When truncating the expansion to

N ¼ 5 harmonics, however, the process requires only

around 400 components and takes less than 0.1 seconds.

These considerations are important as each lookup table is

only valid for a certain experimental set up, with a given

plasma density, probe frequency and interaction length.

Once the lookup table is calculated, however, retrieval of

the wakefield amplitude and frequency is extremely fast.

(a) i) (a) ii) (b)

FIG. 4. (a) The calculated ratios jZκ=Z0j against plasma wave amplitude βm for (i) the κ ¼ 1 and (ii) κ ¼ 2 satellite peaks. The ratios

are approximated using N ¼ 1 (blue), N ¼ 5 (green) and N ¼ 10 (red) and are compared to simulations of the ideal ratios (black).

(b) The wakefield amplitude retrieved using the peak ratios jZκ=Z0j against the simulated plasma wave amplitude.
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The analysis can be simplified in two cases. If the wake-

field is not too nonlinear, βm ≪ 1, the original frequency

component at ωp dominates, such that ∀ n > 1ðϕn ≪ ϕ1Þ.
In this case, it is possible to truncate the expansion at N ¼ 1

and use the same procedure as for linear wakefields, with

r1 ≈ ½J1ðϕ1Þ=J0ðϕ1Þ�F ðωpÞ. This sacrifices only a small

amount of accuracy, on the few percent level. On the other

hand, if the phase change is sufficiently small, ϕðζÞ ≪ 1,

such as at low densities or short interaction lengths, it is

feasible to limit the order of the Bessel peaks jknj ≤ 1, as

J2ðxÞ=J1ðxÞ < 0.13 for x < 0.5. If we further allow only one

kn to be nonzero, the ratio of heights of the κth satellite to the
sideband is much easier to calculate:

rκ ¼
J1ðϕκÞ
J0ðϕκÞ

F ðκωpÞ ð20Þ

This situation can always be achieved for a given

experiment by reducing the interaction length until

ϕðζÞ ≪ 1. As with conventional interferometry, phase

changes which are too large make reconstruction difficult,

but small phase changes are difficult to measure.

B. General wakefields

In general, wakefields need not be periodic, and hence

contain many frequencies which are not multiples of the

plasma frequency. If we approximate this with a finite

set of N frequencies, which are not uniformly spaced,

the phase change due to the wakefield can be written

ϕwakeðζÞ ¼
P

N
n¼1

ϕn sinðωnζ þ θnÞ. By comparison with

the results for a quasilinear wakefield with nωp → ωn we

can find the resulting TESS signal:

sðtÞ ¼ � � � þ
X

∞

k1¼−∞

…

X

∞

kN¼−∞

Jk1ðϕ1Þ…JkN ðϕNÞ

· ei
P

N

n¼1
knθnHpr;r

�

t − Δt;
X

N

n¼1

knωn

�

þ � � � ð21Þ

While this looks very similar to the result for quasilinear

wakefields, the peaks for general wakefields will lie

either side of the original TESS satellites at locations

t ¼ Δtþ ψ ð2ÞðPN
n¼1

knωnÞ. These positions are not

equally spaced and therefore each of the TESS satellites

will be split into new peaks. However, as one of the

sinusoidal components is at the plasma frequency,

ω1 ¼ ωp, there will still be peaks at tk ¼ Δtþ kψ ð2Þωp,

from the cases fkng ¼ fk; 0; 0;…g.
This is demonstrated for example simulated wakefields,

in (i) a weakly nonlinear regime and (ii) the bubble regime,

shown in Fig. 5. In the bubble regime the ponderomotive

(a) i) (b) i) (c) i)

(a) ii) (b) ii) (c) ii)

FIG. 5. (a) Simulated electron density maps of a wakefield in (i) a weakly nonlinear regime and (ii) the strongly non-linear bubble

regime. (b) Maps of the calculated TESS signal resulting from these density profiles, plotted in both space and in time against the

expected peak positions. The magnitude of the TESS signal is plotted on a logarithmic scale. (c) A reconstruction of the electron density

map of the wakefield using the TESS analysis, using N ¼ 4 peaks from the TESS signal. In all plots the profile on-axis is shown below.
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force from an intense laser pulse is sufficient to completely

evacuate a region of electrons, leaving only ions within a

bubble with a diameter equal to the plasma period.

The density maps were simulated with the EPOCH

particle-in-cell code [24], with a bi-Gaussian drive

laser with a peak beam intensity of (i) 2 × 1018 Wcm−2

and (ii) 4 × 1019 Wcm−2, passing through a high density

plasma at ne ¼ 1019 cm−3. The pulse was matched to the

plasma wavelength and period with aw0 ¼ 3 μm spot and a

duration of tFWHM ¼ 13 fs. The resulting density profiles

are neither sinusoidal nor periodic and hence will contain

many frequency components. The resulting TESS signals

in both space and time were simulated for identical and

Gaussian probe and reference pulses with 400 nm wave-

length and 10 fs bandwidth limited duration, each stretched

to 1 ps FWHM duration.
Figure 5(a) shows the density maps in the two cases: in

the weakly nonlinear case several plasma periods are
captured by the simulation, whereas in the bubble regime
only two bubbles are shown, separated by τp. Because the
wakefield is strongly nonlinear the electrons are relativistic
and the plasma period is longer than expected for the density,

τp ¼
ffiffiffi

γ̄
p

τp0, giving ωp ¼ ωp0=
ffiffiffi

γ̄
p

. Figure 5(b) shows the

TESS signal for each spatial position of the simulation, with
many peaks present at different spatial positions. The 1st and

2nd order satellites can be seen at locations t1 ≈ Δtþ
0.8ωp0ψ

ð2Þ and t2 ≈ Δtþ 1.6ωp0ψ
ð2Þ, which implies that

γ̄ ≈ 1.6. From this it is possible to estimate the wakefield

amplitude as β̄ ≈ 0.8, or δne=ne0 ≈ 4, which is a substantial
underestimate.
Recovering the wakefield amplitude more accurately is

difficult as in general many frequencies are required to
completely reconstruct the wakefield; the amplitude of the
fundamental at a frequency ωp is much smaller than the
total height of the density fluctuation. Unlike periodic
quasilinear wakefields, there is no way to know from the
satellite peak heights alone whether the amplitude is
reduced because of the shape of the wakefield or because
there are only a few plasma periods present. With only two
plasma periods present in the strongly nonlinear regime,
applying the linear analysis of Sec. II to the TESS signal in
Fig. 5(b) measures the density fluctuation as δne=ne0 ≈ 0.9,
which is a factor of 10 lower than the true value. In the
weakly nonlinear regime, however, the wake amplitude is
estimated as δne=ne0 ≈ 0.4, close to the true value. In this
situation the first TESS peak is sufficient for a first order
approximation.

Figure 5(c) shows attempted reconstructions by instead

measuring the location, amplitude and phase of all peaks

up to t ¼ Δtþ 3ψ ð2Þωp0 at each spatial position of the

TESS spectrum. The frequency of each component was

deduced as ωn ¼ ðtn − ΔtÞ=ψ ð2Þ, where tn was the location
of the nth peak; the amplitude was deduced from

rn ¼ ½J1ðϕnÞ=J0ðϕnÞ�F ðωnÞ, where rn ¼ jsðtnÞ=sðΔtÞj is
the measured ratio of peak heights; and the phase was

deduced from θn ≈ arg ½sðtnÞ=sðΔtÞ�. This allowed us to

reconstruct the phase change due to the wakefield as

ϕwake ≈
P

N
n¼1

ϕn sinðωnζ þ θnÞ, for each spatial position,

and hence to reconstruct the density map of the wakefield.

While some of the general features of the wakefield are

reproduced, only a limited number of peaks (N ¼ 4) were

captured in the TESS signal and so this reconstruction

inevitably fails to reproduce the true profile present in the

simulation, particularly small spatial features. Whereas for

the weakly nonlinear wakefield it is still possible to

reconstruct the density with reasonable accuracy, for the

simulation in the bubble regime the reconstruction fails and

the calculated wakefield amplitude is more than an order of

magnitude too small. The accuracy is limited by the number

of peaks that can be captured in the TESS signal, which in

turn is effectively limited by the bandwidth of the probe pulse

and the overlap factorF ðωnÞ. Sharp andnonperiodic features
with durations less than the bandwidth limited duration of the

probe pulse, for instance features such as an ionization front,

are poorly reproduced by TESS, and are a source of noise

when trying to extract the wakefield amplitude. Capturing

shorter duration features requires using a shorter duration

probe pulse with a broader bandwidth.

When attempting to reconstruct the density profile of a

nonlinear wakefield with a continuous range of frequency

components, FDH is therefore likely to be more effective

than TESS. We can see this by considering another

approach to this problem, where we can approximate the

phase with N uniformly spaced frequencies separated

by an arbitrarily small frequency, δω. The phase can then

be written as ϕwakeðζÞ ¼
P

N
n¼1

ϕn sinðnδωζ þ θnÞ, where
many of the amplitudes ϕn are small or zero. This is a

discrete Fourier transform (DFT), and approximates the

true phase profile increasingly well at larger N and smaller

δω. All of the information about the wakefield is contained

in the region of the TESS signal surrounding the sideband

at t ¼ Δt, which can be written as:

sðtÞ ¼ …þ
X

∞

κ¼−∞

Zκðfϕng; fθngÞHpr;rðt − Δt; κδωÞ þ � � � ;

ð22Þ

where as before κ ¼
P

N
n¼1

knn and Z is defined in Eq. (17).

The potential TESS peaks are then separated by ψ ð2Þδω,
although only some of these peaks will be nonzero. Fourier

transforming this region of the TESS signal to the spectral

domain yields:

SðωÞ ¼ � � � þ
X

∞

κ¼−∞

Zκðfϕng; fθngÞ

· Eprðω − κδωÞE�
r ðωÞe−iωΔt þ � � �

¼ � � � þ E0
prðωÞE0�

r ðωÞ þ � � � ð23Þ
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The reference pulse in the spectral domain is unchanged,

but the presence of the wakefield has modulated the electric

field of the probe, creating many copies of the probe pulse,

spectrally shifted by multiples of δω and with amplitudes

and phases described by Zκ. The frequency interval δω can

therefore be considered as the resolution of the DFT in the

spectral domain. However, as the DFT becomes continuous

with δω → 0, these copies, and the resulting satellite peaks

in the TESS signal, are no longer distinct. In the continuum

limit we cannot measure relative peak heights and the TESS

procedure will inevitable fail. Instead we have isolated

the spectral component E0
prðωÞE0�

r ðωÞ and must continue

the FDH procedure to reconstruct the phase due to the

wakefield.

1. Longitudinal variation

We have just discussed a situation where the wakefield is

not periodic in the comoving frame. The same phase

change can arise, however, if the background plasma

density varies longitudinally and the plasma frequency

changes along the path of the probe pulse. By the nature of

the experimental set up both FDH and TESS average the

density profile along this path, with each point ζ in the

comoving frame corresponding to a line of points in space

described by z ¼ vgðτ − ζÞ. Whereas an FDH recon-

struction risks obscuring the signal from one region by

overlaying it with the signal from another region, TESS

separates the density profile into its different frequency

components. If the probe pulse encounters distinct regions

of varying electron density along its path, such as in two

stage injection-acceleration setups described in Refs. [25–

27], the spectral interferogram will again contain compo-

nents from several frequencies described by ωn ¼ ωpðznÞ.
As described above, this will have the effect of creating

new peaks in the TESS spectrum, where each corresponds

to the plasma frequency at a particular region along the path

of the probe pulse. However, if we are aware of the

longitudinal variation of the plasma density and have

measured the length of each region, we can again look

only at uniformly spaced peaks from the sets fk1; 0; 0…g,
f0; k2; 0; 0…g, f0; 0; k3; 0…g etc. These relate to distinct

regions along the path of the probe pulse, each with a

distinct plasma density. So long as these do not overlap, if

the density ramps between different regions are sufficiently

short, it is possible to reconstruct the wakefield frequency

and amplitude within each region as before, using:

tx;kx ¼ Δtþ kxψ
ð2Þωp;x; ð24Þ

rx;kx ¼
JkxðϕxÞ
J0ðϕxÞ

F ðkxωp0Þ; ð25Þ

and ϕx ¼
ω2
p;xLx

2ω0c

δne

ne;x
; ð26Þ

where Lx is the length of a region with plasma density ne;x
and plasma frequency ωpx. This causes a phase change

of amplitude ϕx and peaks in the TESS spectrum at

locations tx;kx .

IV. CONCLUSIONS

We have extended the TESS analysis technique to probe

and reference pulses of arbitrary temporal and spectral

profile. This allows more accurate measurement of the

frequency and amplitude of the wakefield in real situations

by using the measured spectra of the probe and reference

pulses instead of a Gaussian approximation. In turn this

allowsus to calculate the electron density of the plasma and to

infer information about the laser pulse driving the wakefield.

In calculating wakefield amplitudes using TESS, the

generalized spectral overlap factor given in Eq. (11) can

be calculated straightforwardly from the measured spectra of

the probe and reference pulses. Using recent experimental

results,we showed that the assumption ofGaussianprobe and

reference pulse spectra can lead to errors in the deduced

amplitude of the plasmawakefield by a factor of around two.

Wehave also demonstrated thatwhen the probe and reference

have different GDDs the TESS peak separation is described

by the effective GDD, which is the mean of the probe and

reference GDDs weighted by the square of their bandwidths.

We have also explored the applicability of TESS to

measurements of nonlinear relativistic plasma waves by

decomposing the wakefield into harmonics of the plasma

frequency. Simulations showed that the extension of TESS to

quasilinear plasmawaves allowed accurate reconstruction of

cold plasma waves with electron velocities as high as

βm ≈ 0.8. For high wakefield amplitudes finding the peak

height ratios involves solving a Diophantine equation and

summing over millions of contributions, but at lower

amplitudes or smaller phase shifts the wakefield amplitude

can be extracted rapidly. TESS therefore retains its advan-

tages over FDH for wakefields in the quasilinear regime. For

general nonlinear wakefields, however, it was only possible

to measure the wakefield frequency and not the amplitude,

and in this regime an FDH phase reconstruction is required.

On the other hand, for wakefields in plasmas with distinct

regions of different density TESS has the capability to extract

thewakefield amplitude in each region separately, but only if

the length of these regions are known.

The extension of TESS to quasilinear plasma waves is

particularly relevant for measuring strong wakefields

generated at low plasma densities. As laser wakefield

experiments attempt to increase the electron energy gain

through increasing the interaction length, TESS provides a

means of rapidly diagnosing problems with the wakefield

on-shot, without requiring electron injection. We have

previously demonstrated [21] that TESS can work effec-

tively at densities of ne ∼ 1018 cm−3 and below, accurately

measuring wakefields with a relative amplitude as small as

1%. By demonstrating that TESS can also be effective for
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plasma waves with density fluctuations on the scale of

δne ∼ ne0, it is possible to envisage applying it to accurately
measure large amplitude wakefields at electron densities

below ne ∼ 1017 cm−3.
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APPENDIX: DETAILED TESS CALCULATIONS

We consider the probe and reference pulses to be

nonidentical and to be of arbitrary spectral profile

ExðωÞ ¼ jExðωÞj exp ðiψxÞ. In evaluating Eq. (6) we will

need to calculate the difference in spectral phase:

Δψ a;bðω;ΩÞ≡ ψ aðω−ΩÞ− ψbðωÞ

¼
�

ψ
ð0Þ
a þ ψ

ð1Þ
a ðω−ω0 −ΩÞ þ 1

2
ψ
ð2Þ
a ðω−ω0 −ΩÞ2 þ � � �

�

−

�

ψ
ð0Þ
b þ ψ

ð1Þ
b ðω−ω0Þ þ

1

2
ψ
ð2Þ
a ðω−ω0Þ2 þ � � �

�

¼ 1

2
ðψ ð2Þ

a − ψ
ð2Þ
b Þðω−ω0Þ2 þ ðψ ð1Þ

a − ψ
ð1Þ
b − ψ

ð2Þ
a ΩÞðω−ω0Þ þ

�

ψ
ð0Þ
a − ψ

ð0Þ
b − ψ

ð1Þ
a Ωþ 1

2
ψ
ð2Þ
a Ω

2

�

þ � � �

¼ Aðω−ω0Þ2 þ BðΩÞðω −ω0Þ þCðΩÞ þ � � � ðA1Þ

for A ¼ 1

2
ðψ ð2Þ

a − ψ
ð2Þ
b Þ ðA2Þ

B ¼ ψ
ð1Þ
a − ψ

ð1Þ
b − ψ

ð2Þ
a Ω ðA3Þ

C ¼ ψ
ð0Þ
a − ψ

ð0Þ
b − ψ

ð1Þ
a Ωþ 1

2
ψ
ð2Þ
a Ω

2 ðA4Þ

1. Case ψ
ð2Þ
a =ψ

ð2Þ
b

When the two pulses have equal GDD the coefficient A ¼ 0 and hence:

Ha;bðt;ΩÞ≡
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

Eaðω −ΩÞE�
bðωÞ exp ðiωtÞdω

¼ 1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEaðω −ΩÞjjEbðωÞj exp ½iBðΩÞðω − ω0Þ þ iCðΩÞ þ iωt�dω

¼ 1
ffiffiffiffiffiffi

2π
p eiCðΩÞe−iω0BðΩÞ

Z

∞

−∞

jEaðω −ΩÞjjEbðωÞj exp fiω½BðΩÞ þ t�gdω ðA5Þ

Since jEaðω −ΩÞjjEbðωÞj is real, this integral is maximized when the phase psi ¼ ω½BðΩÞ þ t� is stationary with respect
to ω at tΩ ¼ −BðΩÞ ¼ ψ

ð2Þ
a Ωþ ψ

ð1Þ
b − ψ

ð1Þ
a . At this peak, the integral has an amplitude:

jHa;bðtΩ;ΩÞj ¼
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEaðω −ΩÞjjEbðωÞjdω ðA6Þ

2. Case ψ
ð2Þ
a ≈ ψ

ð2Þ
b

The situation when the pulses have different GDDs is more complex, but progress can be made by treatingHa;bðt;ΩÞ as a
Fourier transform of a product, which is equal to the convolution of the individual Fourier transforms:
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Ha;bðt;ΩÞ ¼
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEaðω − ΩÞjjEbðωÞj exp ½iψ aðω −ΩÞ − iψbðωÞ þ iωt�dω

¼ 1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

�

1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEaðω0 −ΩÞjjEbðω0Þjeiω0t0dω0
�

·

�

1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

exp ½iΔψ a;bðω00;ΩÞ þ iω00ðt − t0Þ�dω00
�

dt0

¼ 1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

Ka;bðt0;ΩÞ · La;bðt − t0;ΩÞdt0 ðA7Þ

If we truncate the phase expansion in Eq. (A2) at second order, the phase term Δψ a;bðω00;ΩÞ þ iω00ðt − t0Þ is a real

quadratic and so the integral La;bðt; t0;ΩÞ in Eq. (A7) is a Gaussian integral with a purely imaginary argument, or a Fresnel

integral, which admits an analytic solution:

La;bðt − t0;ΩÞ ¼ 1
ffiffiffiffiffiffi

2π
p exp ½þiCðΩÞ þ iω0ðt − t0Þ� ·

Z

∞

−∞

exp fiAðω00 − ω0Þ2 þ i½BðΩÞ þ t − t0�ðω00 − ω0Þgdω00

¼ 1
ffiffiffiffiffiffi

2π
p

ffiffiffiffi

πi

A

r

exp

�

−i
½BðΩÞ þ t − t0�2

4A

�

eiCðΩÞeiω0ðt−t0Þ

¼
ffiffiffiffiffiffi

i

2A

r

eiCðΩÞeiω0ðt−t0Þeλgðt−t
0;ΩÞ; ðA8Þ

where gðτ;ΩÞ ¼ − i
4
ðBðΩÞ þ τÞ2 and λ ¼ A−1 ¼ 2ðψ ð2Þ

a − ψ
ð2Þ
b Þ−1. This means that for a given t and Ω the integral

Ha;bðt;ΩÞ is of the form
R

Γ
fðxÞeλgðxÞdx and if the difference between the probe and reference pulse GDDs is sufficiently

small, λ ≫ 1. gðt − t0;ΩÞ is an exact quadratic in t0 and so if Ka;bðt0;ΩÞ is sufficiently well behaved we can extend t0 to the
complex plane while ensuring that fðt0;ΩÞ and gðt − t0;ΩÞ are holomorphic. This allows us to deform the contour of

integration Γ and use the method of steepest descent, with gðt − t0;ΩÞ having a single nondegenerate saddle point at

t − t0
0
¼ −BðΩÞ at which point gðt − t0

0
;ΩÞ ¼ 0 and g00ðt − t0

0
;ΩÞ ¼ − i

2
:

Ha;bðt;ΩÞ ¼
1
ffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffi

i

2A

r

eiCðΩÞ
Z

∞

−∞

Ka;bðt0;ΩÞeiωðt−t
0Þeλgðt−t

0;ΩÞdt0

≈

ffiffiffiffiffiffiffiffiffi

i

4πA

r

eiCðΩÞKa;bðt00;ΩÞeiω0ðt−t00Þ
ffiffiffiffiffiffi

2π

λ

r

eλgðt−t
0
0
;ΩÞ½−g00ðt − t0

0
;ΩÞ�−1

2

¼ eiCðΩÞeiω0ðt−t00ÞKa;bðt00;ΩÞ

¼ 1
ffiffiffiffiffiffi

2π
p eiCðΩÞe−iω0BðΩÞ

Z

∞

−∞

jEaðω0 −ΩÞjjE�
bðω0Þjeiω0ðtþBðΩÞÞdω0 ðA9Þ

This expression is identical to Eq. (A5) for the case ψ
ð2Þ
a ¼ ψ

ð2Þ
b and hence when the difference between GDDs is small

but finite, the integral will again be maximized at approximately tΩ ¼ −BðΩÞ ¼ ψ
ð2Þ
a Ωþ ψ

ð1Þ
b − ψ

ð1Þ
a with an amplitude

given by Eq. (A6).

3. Case ψ
ð2Þ
a ≠ ψ

ð2Þ
b

for Gaussian jExðωÞj
The final tractable case is when pulses a and b can both be assumed to be Gaussian, but not identical, such that they can be

described as:

jExðωÞj ¼ Ex0 exp

�

−
1

2

�

ω − ω0

δωx

�

2

− σxðω − ω0Þ
�

; ðA10Þ

where δωx is a measure of the spectral bandwidth of the pulse and σx allows the central frequency of the pulse to vary.
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Then,

jEaðω −ΩÞjjEbðωÞj ¼ Ea0Eb0 exp

�

−
1

2

�

ω − ω0 − Ω

δωa

�

2

− σaðω − ω0Þ −
1

2

�

ω − ω0

δωb

�

2

− σbðω − ω0Þ
�

¼ Ea0Eb0 exp

�

−
1

2

�

1

δω2
a

þ 1

δω2

b

�

ðω − ω0Þ2 −
�

σa þ σb −
Ω

δω2
a

�

ðω − ω0Þ −
Ω

2

2δω2
a

�

¼ Ea0Eb0 exp ½−Dðω − ω0Þ2 − EðΩÞðω − ω0Þ − FðΩÞ� ðA11Þ

This allows us to construct the integrand of Ha;bðt;ΩÞ as a Gaussian, using α≡D − iA, βðΩÞ≡ EðΩÞ − iBðΩÞ and

γ ≡ FðΩÞ − iCðΩÞ, and hence to integrate it exactly, with the positive real part of α ensuring convergence:

Ha;bðt;ΩÞ ¼
1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

jEaðω −ΩÞjjEbðωÞj exp ½iψ aðω − ΩÞ − iψbðωÞ þ iωt�dω

¼ 1
ffiffiffiffiffiffi

2π
p

Z

∞

−∞

Ea0Eb0 exp ½−αðω − ω0Þ2 − βðΩÞðω − ω0Þ − γðΩÞ þ iωt�dω

¼ 1
ffiffiffiffiffiffi

2π
p Ea0Eb0e

−γðΩÞeiω0t

Z

∞

−∞

exp f−αðω − ω0Þ2 þ ½it − βðΩÞ�ðω − ω0Þgdω

¼ 1
ffiffiffiffiffiffi

2π
p Ea0Eb0e

−γðΩÞeiω0t

ffiffiffi

π

α

r

exp

�½it − βðΩÞ�2
4α

�

ðA12Þ

Ha;bðt;ΩÞ is a complex Gaussian and the real part of the argument of the exponential can be written:

ℜ

�½it − βðΩÞ�2
4α

�

¼ ℜ

� ðDþ iAÞ
4ðA2 þD2Þ ½it − EðΩÞ þ iBðΩÞ�2

�

¼ ℜ

� ðDþ iAÞ
4ðA2 þD2Þ f−½tþ BðΩÞ�2 þ ½EðΩÞ�2 − 2iEðΩÞ½tþ BðΩÞ�g

�

¼ 1

4ðA2 þD2Þ f−D½tþ BðΩÞ�2 þD½EðΩÞ�2 þ 2AEðΩÞ½tþ BðΩÞ�g

¼ 1

4ðA2 þD2Þ

�

−D

�

tþ BðΩÞ − AEðΩÞ
D

��

2

þ ½AEðΩÞ�2
D

þD½EðΩÞ�2
�

ðA13Þ

Ha;bðt;ΩÞ is therefore maximum at,

tΩ ¼ −BðΩÞ þ AEðΩÞ
D

¼ ðψ ð2Þ
a Ωþ ψ

ð1Þ
b − ψ

ð1Þ
a Þ þ 1

2
ðψ ð2Þ

a − ψ
ð2Þ
b Þ

�

σa þ σb −
Ω

δω2
a

��

1

2

�

1

δω2
a

þ 1

δω2

b

��

−1

¼
�

ψ
ð1Þ
b − ψ

ð1Þ
a þ ðψ ð2Þ

a − ψ
ð2Þ
b Þðσa þ σbÞ

�

δω2
aδω

2

b

δω2
a þ δω2

b

��

þΩ

�

ψ
ð2Þ
a − ðψ ð2Þ

a − ψ
ð2Þ
b Þ 1

δω2
a

�

δω2
aδω

2

b

δω2
a þ δω2

b

��

¼ t0 þΩ½ðδω2
a þ δω2

bÞψ
ð2Þ
a − δω2

bðψ
ð2Þ
a − ψ

ð2Þ
b Þ�

�

1

δω2
a þ δω2

b

�

¼ t0 þΩ
δω2

aψ
ð2Þ
a þ δω2

bψ
ð2Þ
b

δω2
a þ δω2

b

ðA14Þ

¼ t0 þΩψ
ð2Þ
eff ðA15Þ
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This implies that instead of the GDD of pulse a, ψ
ð2Þ
a , we

should use the mean GDD of pulses a and b, weighted by

the square of their bandwidths. If the probe and reference

pulses are similar but not identical, δωa ≈ δωb, this tends

toward the mean GDD, 1
2
ðψ ð2Þ

a þ ψ
ð2Þ
b Þ. While the position

of the main sideband t0 is dependent on the central

frequencies of the two pulses through σa and σb, the

separation of the peak from the main sideband, Ωψ
ð2Þ
eff , is

unaffected by changes in the central frequency of the two

pulses.
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