44 research outputs found

    A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana.

    Get PDF
    Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together with the workflow associated with functional modules offer a strong resource to unravel the regulatory potential of NAC genes and that this workflow could be used to study other families of transcription factors

    Quorum Sensing-Regulated Phenol-Soluble Modulins Limit Persister Cell Populations in Staphylococcus aureus

    No full text
    Incomplete killing of bacterial pathogens by antibiotics is an underlying cause of treatment failure and accompanying complications. Among those avoiding chemotherapy are persisters being individual cells in a population that for extended periods of time survive high antibiotic concentrations proposedly by being in a quiescent state refractory to antibiotic killing. While investigating the human pathogen Staphylococcus aureus and the influence of growth phase on persister formation, we noted that spent supernatants of stationary phase cultures of S. aureus or S. epidermidis, but not of distantly related bacteria, significantly reduced the persister cell frequency upon ciprofloxacin challenge when added to exponentially growing and stationary phase S. aureus cells. Curiously, the persister reducing activity of S. aureus supernatants was also effective against persisters formed by either S. carnosus or Listeria monocytogenes. The persister reducing component, which resisted heat but not proteases and was produced in the late growth phase in an agr quorum-sensing dependent manner, was identified to be the phenol-soluble modulin (PSM) toxins. S. aureus express several PSMs, each with distinct cytolytic and antimicrobial properties; however, the persister reducing activity was specifically linked to synthesis of the PSMα family. Correspondingly, a high-persister phenotype of a PSMα mutant was observed upon fluoroquinolone or aminoglycoside challenge, demonstrating that the persister reducing activity of PSMs can be endogenously synthesized or extrinsically added. Given that PSMs have been associated with lytic activity against bacterial membranes we propose that PSM toxins increase the susceptibility of persister cells to killing by intracellularly acting antibiotics and that chronic and re-occurring infections with quorum sensing, agr negative mutants may be difficult to treat with antibiotics because of persister cells formed in the absence of PSM toxins

    Table_1.pdf

    No full text
    <p>Incomplete killing of bacterial pathogens by antibiotics is an underlying cause of treatment failure and accompanying complications. Among those avoiding chemotherapy are persisters being individual cells in a population that for extended periods of time survive high antibiotic concentrations proposedly by being in a quiescent state refractory to antibiotic killing. While investigating the human pathogen Staphylococcus aureus and the influence of growth phase on persister formation, we noted that spent supernatants of stationary phase cultures of S. aureus or S. epidermidis, but not of distantly related bacteria, significantly reduced the persister cell frequency upon ciprofloxacin challenge when added to exponentially growing and stationary phase S. aureus cells. Curiously, the persister reducing activity of S. aureus supernatants was also effective against persisters formed by either S. carnosus or Listeria monocytogenes. The persister reducing component, which resisted heat but not proteases and was produced in the late growth phase in an agr quorum-sensing dependent manner, was identified to be the phenol-soluble modulin (PSM) toxins. S. aureus express several PSMs, each with distinct cytolytic and antimicrobial properties; however, the persister reducing activity was specifically linked to synthesis of the PSMα family. Correspondingly, a high-persister phenotype of a PSMα mutant was observed upon fluoroquinolone or aminoglycoside challenge, demonstrating that the persister reducing activity of PSMs can be endogenously synthesized or extrinsically added. Given that PSMs have been associated with lytic activity against bacterial membranes we propose that PSM toxins increase the susceptibility of persister cells to killing by intracellularly acting antibiotics and that chronic and re-occurring infections with quorum sensing, agr negative mutants may be difficult to treat with antibiotics because of persister cells formed in the absence of PSM toxins.</p
    corecore