500 research outputs found

    Unveiling spatial variability within the Dotson Melt Channel through high-resolution basal melt rates from the Reference Elevation Model of Antarctica

    Get PDF
    The intrusion of Circumpolar Deep Water in the Amundsen and Bellingshausen Sea embayments of Antarctica causes ice shelves in the region to melt from below, potentially putting their stability at risk. Earlier studies have shown how digital elevation models can be used to obtain ice shelf basal melt rates at a high spatial resolution. However, there has been limited availability of high-resolution elevation data, a gap the Reference Elevation Model of Antarctica (REMA) has filled. In this study we use a novel combination of REMA and CryoSat-2 elevation data to obtain high-resolution basal melt rates of the Dotson Ice Shelf in a Lagrangian framework, at a 50 m spatial posting on a 3-yearly temporal resolution. We present a novel method: Basal melt rates Using REMA and Google Earth Engine (BURGEE). The high resolution of BURGEE is supported through a sensitivity study of the Lagrangian displacement. The high-resolution basal melt rates show a good agreement with an earlier basal melt product based on CryoSat-2. Both products show a wide melt channel extending from the grounding line to the ice front, but our high-resolution product indicates that the pathway and spatial variability of this channel is influenced by a pinning point on the ice shelf. This result emphasizes the importance of high-resolution basal melt rates to expand our understanding of channel formation and melt patterns. BURGEE can be expanded to a pan-Antarctic study of high-resolution basal melt rates. This will provide a better picture of the (in)stability of Antarctic ice shelves.</p

    An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets

    Get PDF
    Optically thin ice and mixed-phase clouds play an important role in polar regions due to their effect on cloud radiative impact and precipitation. Cloud-base heights can be detected by ceilometers, low-power backscatter lidars that run continuously and therefore have the potential to provide basic cloud statistics including cloud frequency, base height and vertical structure. The standard cloud-base detection algorithms of ceilometers are designed to detect optically thick liquid-containing clouds, while the detection of thin ice clouds requires an alternative approach. This paper presents the polar threshold (PT) algorithm that was developed to be sensitive to optically thin hydrometeor layers (minimum optical depth τ &geq; 0.01). The PT algorithm detects the first hydrometeor layer in a vertical attenuated backscatter profile exceeding a predefined threshold in combination with noise reduction and averaging procedures. The optimal backscatter threshold of 3 × 10<sup>&minus;4</sup> km<sup>−1</sup> sr<sup>−1</sup> for cloud-base detection near the surface was derived based on a sensitivity analysis using data from Princess Elisabeth, Antarctica and Summit, Greenland. At higher altitudes where the average noise level is higher than the backscatter threshold, the PT algorithm becomes signal-to-noise ratio driven. The algorithm defines cloudy conditions as any atmospheric profile containing a hydrometeor layer at least 90 m thick. A comparison with relative humidity measurements from radiosondes at Summit illustrates the algorithm's ability to significantly discriminate between clear-sky and cloudy conditions. Analysis of the cloud statistics derived from the PT algorithm indicates a year-round monthly mean cloud cover fraction of 72% (±10%) at Summit without a seasonal cycle. The occurrence of optically thick layers, indicating the presence of supercooled liquid water droplets, shows a seasonal cycle at Summit with a monthly mean summer peak of 40 % (±4%). The monthly mean cloud occurrence frequency in summer at Princess Elisabeth is 46% (±5%), which reduces to 12% (±2.5%) for supercooled liquid cloud layers. Our analyses furthermore illustrate the importance of optically thin hydrometeor layers located near the surface for both sites, with 87% of all detections below 500 m for Summit and 80% below 2 km for Princess Elisabeth. These results have implications for using satellite-based remotely sensed cloud observations, like CloudSat that may be insensitive for hydrometeors near the surface. The decrease of sensitivity with height, which is an inherent limitation of the ceilometer, does not have a significant impact on our results. This study highlights the potential of the PT algorithm to extract information in polar regions from various hydrometeor layers using measurements by the robust and relatively low-cost ceilometer instrument

    Polar clouds and radiation in satellite observations, reanalyses, and climate models

    Get PDF
    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007-2010) to evaluate simulated clouds and radiation over both polar ice sheets and oceans in state-of-the-art atmospheric reanalyses (ERA-Interim and Modern Era Retrospective-Analysis for Research and Applications-2) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensemble. First, we show that, compared to Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled, CloudSat-CALIPSO better represents cloud liquid and ice water path over high latitudes, owing to its recent explicit determination of cloud phase that will be part of its new R05 release. The reanalyses and climate models disagree widely on the amount of cloud liquid and ice in the polar regions. Compared to the observations, we find significant but inconsistent biases in the model simulations of cloud liquid and ice water, as well as in the downwelling radiation components. The CMIP5 models display a wide range of cloud characteristics of the polar regions, especially with regard to cloud liquid water, limiting the representativeness of the multimodel mean. A few CMIP5 models (CNRM, GISS, GFDL, and IPSL_CM5b) clearly outperform the others, which enhances credibility in their projected future cloud and radiation changes over high latitudes. Given the rapid changes in polar regions and global feedbacks involved, future climate model developments should target improved representation of polar clouds. To that end, remote sensing observations are crucial, in spite of large remaining observational uncertainties, which is evidenced by the substantial differences between the two data sets

    A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015)

    Get PDF
    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements

    Observations of Buried Lake Drainage on the Antarctic Ice Sheet.

    Get PDF
    Between 1992 and 2017, the Antarctic Ice Sheet (AIS) lost ice equivalent to 7.6 ± 3.9 mm of sea level rise. AIS mass loss is mitigated by ice shelves that provide a buttress by regulating ice flow from tributary glaciers. However, ice-shelf stability is threatened by meltwater ponding, which may initiate, or reactivate preexisting, fractures, currently poorly understood processes. Here, through ground penetrating radar (GPR) analysis over a buried lake in the grounding zone of an East Antarctic ice shelf, we present the first field observations of a lake drainage event in Antarctica via vertical fractures. Concurrent with the lake drainage event, we observe a decrease in surface elevation and an increase in Sentinel-1 backscatter. Finally, we suggest that fractures that are initiated or reactivated by lake drainage events in a grounding zone will propagate with ice flow onto the ice shelf itself, where they may have implications for its stability

    Atmospheric triggers of the Brunt Ice Shelf calving in February 2021

    Get PDF
    The calving of Antarctic ice shelves remains unpredictable to date due to a lack of understanding of the role of the different climatic components in such events. In this study, the role of atmospheric forcing in the calving of the Brunt Ice Shelf (BIS) in February 2021 is investigated using a combination of observational and reanalysis data. The occurrence of a series of extreme cyclones around the time of the calving induced an oceanward sea surface slope of more than 0.08º leading to the calving along a pre-existing rift. The severe storms were sustained by the development of a pressure dipole on both sides of the BIS associated with a La Niña event and the positive phase of the Southern Annular Mode. Poleward advection of warm and moist low-latitude air over the BIS area just before the calving was also observed in association with atmospheric rivers accompanying the cyclones. Immediately after the calving, strong offshore winds continued and promoted the drift of the iceberg A-74 in the Weddell Sea at a speed up to 700 m day-1. This study highlights the contribution of local atmospheric conditions to ice-shelf dynamics. The link to the larger scale circulation patterns indicates that both need to be accounted for in the projections of Antarctic ice shelf evolution

    Immunoregulation of Dendritic Cell Subsets by Inhibitory Receptors in Urothelial Cancer.

    Get PDF
    Blockade of inhibitory receptors (IRs) overexpressed by T cells can activate antitumor immune responses, resulting in the most promising therapeutic approaches, particularly in bladder cancer, currently able to extend patient survival. Thanks to their ability to cross-present antigens to T cells, dendritic cells (DCs) are an immune cell population that plays a central role in the generation of effective antitumor T-cell responses. While IR function and expression have been investigated in T cells, very few data are available for DCs. Therefore, we analyzed whether DCs express IRs that can decrease their functions. To this end, we investigated several IRs (PD-1, CTLA-4, BTLA, TIM-3, and CD160) in circulating CD1c javax.xml.bind.JAXBElement@4f1331d4 DCs, CD141 javax.xml.bind.JAXBElement@68e4feef DCs, and plasmacytoid DCs from healthy donors and patients with urothelial cancer (UCa). Different DC subsets expressed BTLA and TIM-3 but not other IRs. More importantly, BTLA and TIM-3 were significantly upregulated in DCs from blood of UCa patients. Locally, bladder tumor-infiltrating DCs also overexpressed BTLA and TIM-3 compared to DCs from paired nontumoral tissue. Finally, in vitro functional experiments showed that ligand-mediated engagement of BTLA and TIM-3 receptors significantly reduced the secretion of effector cytokines by DC subpopulations. Our findings demonstrate that UCa induces local and systemic overexpression of BTLA and TIM-3 by DCs that may result in their functional inhibition, highlighting these receptors as potential targets for UCa treatment. We investigated the expression and function of a panel of inhibitory receptors in dendritic cells (DCs), an immune cell subpopulation critical in initiation of protective immune responses, among patients with urothelial carcinoma. We found high expression of BTLA and TIM-3 by blood and tumor DCs, which could potentially mediate decreased DC function. The results suggest that BTLA and TIM-3 might be new targets for urothelial carcinoma treatment

    Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial.

    Get PDF
    Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P &lt; .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P &lt; .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis. clinicaltrials.gov Identifier: NCT00916409

    Ground-Level Intelligence: Action-Oriented Representation and the Dynamics of the Background

    Get PDF
    First paragraph: Studies of embodied intelligence have often tended to focus on the essentially responsive aspects of bodily expertise (for example, catching a ball once it has been hit into the air). But skilled sportsmen and sportswomen, actors and actresses, dancers, orators, and other performers often execute ritual-like gestures or other fixed action routines as performance-optimizing elements in their pre-performance preparations, especially when daunting or unfamiliar conditions are anticipated. For example, a recent movie (The King's Speech) and a book of memories (Logue and Conradi, 2010) have revealed that, just before broadcasting his historic announcement that the United Kingdom was entering the Second World War, King George VI furiously repeated certain tongue twisters in a resolute effort to overcome his relentless stutter. Such ritualized actions don't merely change the causal relations between performers and their physical environments (although this may well be part of their function); they provide performers with the practical scaffolds that summon more favourable contexts for&nbsp;their accomplishments, by uncovering viable landscapes for effective action rather than unassailable barricades of frightening obstacles. In other words, while the kinds of embodied skills that have occupied many recent theorists serve to attune behaviour to an actual context of activity, whether that context is favourable or not, preparatory embodied routines actively refer to certain potential (and thus non-actual) contexts of a favourable nature that those routines themselves help to bring about, indicating the possibilities of actions disclosed by the desired context. As we shall see, this sort of transformative event, which is exemplified by, but not confined to, the ritualized gestures and routines of skilled performers, is a regular occurrence in everyday skilled activity, not the crowning achievement of a few talented individuals; so the capacity in question belongs centrally to our ordinary suite of bodily skills. The theoretical ramifications of that embodied capacity are the topic of this paper
    corecore