11 research outputs found

    Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines

    Get PDF
    Marker-trait association studies in tomato have progressed rapidly due to the availability of several populations developed between wild species and domesticated tomato. However, in the absence of whole genome sequences for each wild species, molecular marker methods for whole genome comparisons and fine mapping are required. We describe the development and validation of a diversity arrays technology (DArT) platform for tomato using an introgression line (IL) population consisting of wild Solanumpennellii introgressed into Solanumlycopersicum (cv. M82). A tomato diversity array consisting of 6,912 clones from domesticated tomato and twelve wild tomato/Solanaceous species was constructed. We successfully bin-mapped 990 polymorphic DArT markers together with 108 RFLP markers across the IL population, increasing the number of markers available for each S.pennellii introgression by tenfold on average. A subset of DArT markers from ILs previously associated with increased levels of lycopene and carotene were sequenced, and 44% matched protein coding genes. The bin-map position and order of sequenced DArT markers correlated well with their physical position on scaffolds of the draft tomato genome sequence (SL2.40). The utility of sequenced DArT markers was illustrated by converting several markers in both the S.pennellii and S.lycopersicum phases to cleaved amplified polymorphic sequence (CAPS) markers. Genotype scores from the CAPS markers confirmed the genotype scores from the DArT hybridizations used to construct the bin map. The tomato diversity array provides additional “sequence-characterized” markers for fine mapping of QTLs in S.pennellii ILs and wild tomato species

    Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms

    Get PDF
    Background: High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings: This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance: These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography

    Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics

    No full text
    P>The aim of this study was to evaluate the use of four nontargeted analytical methodologies in the detection of unintended effects that could be derived during genetic manipulation of crops. Three profiling technologies were used to compare the transcriptome, proteome and metabolome of two transgenic maize lines with the respective control line. By comparing the profiles of the two transgenic lines grown in the same location over three growing seasons, we could determine the extent of environmental variation, while the comparison with the control maize line allowed the investigation of effects caused by a difference in genotype. The effect of growing conditions as an additional environmental effect was also evaluated by comparing the Bt-maize line with the control line from plants grown in three different locations in one growing season. The environment was shown to play an important effect in the protein, gene expression and metabolite levels of the maize samples tested where 5 proteins, 65 genes and 15 metabolites were found to be differentially expressed. A distinct separation between the three growing seasons was also found for all the samples grown in one location. Together, these environmental factors caused more variation in the different transcript/protein/metabolite profiles than the different genotypes

    A gDNA microarray for genotyping salvia species

    No full text
    Salvia is an important genus from the Lamiaceae with approximately 1,000 species. This genus is distributed globally and cultivated for ornamental, culinary, and medicinal uses. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia subtracted diversity array (SDA) a suppression subtractive hybridization (SSH) was performed between a pool of Salvia species and a pool of angiosperms and non-angiosperms to selectively isolate Salvia-specific sequences. A total of 285-subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating S. officinalis and S. miltiorrhiza from their closely related species and was also able to reveal genetic relationships consistent with geographical origins. In addition, this approach was capable of isolating highly polymorphic sequences from chloroplast and nuclear DNA without preliminary sequence information. Therefore, SDA is a powerful technique for fingerprinting non-model plants and for identifying new polymorphic loci that may be developed as potential molecular markers

    Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome

    No full text
    The original publication can be found at www.springerlink.comDespite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook × Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.Mona Akbari, Peter Wenzl, Vanessa Caig, Jason Carling, Ling Xia , Shiying Yang, Grzegorz Uszynski, Volker Mohler, Anke Lehmensiek, Haydn Kuchel, Mathew J. Hayden, Neil Howes, Peter Sharp, Peter Vaughan, Bill Rathmell, Eric Huttner and Andrzej Kilia
    corecore