8 research outputs found

    Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    Get PDF
    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities

    Alvin Explores the Deep Northern Gulf of Mexico Slope

    No full text
    Many of the world's productive deepwater hydrocarbon basins experience significant and ongoing vertical migration of fluids and gases to the modern seafloor. These products, which are composed of hydrocarbon gases, crude oil, formation fluids, and fluidized sediment, dramatically change the geologic character of the ocean floor, and they create sites where chemosynthetic communities supported by sulfide and hydrocarbons flourish. Unique fauna inhabit these sites, and the chemosynthetic primary production results in communities with biomass much greater than that of the surrounding seafloor

    Deep-Sea Benthic Faunal Impacts and Community Evolution Before, During, and After the Deepwater Horizon Event

    No full text
    Oil from the Deepwater Horizon blowout reached the seafloor through deep-sea plumes and sedimentation of oil and oiled marine snow. This oil caused extensive damage over wide areas to both hard-bottom and soft-bottom communities. The most sensitive bioindicators were deep-sea planar octocorals for hard-bottoms and macrofauna and meiofauna diversity and taxa richness for soft-bottoms. Both hard-bottom and soft-bottom communities are very vulnerable to deep-sea oil spills. Deep-sea corals grow slowly and thus have extremely slow recovery rates. Four years after the spill, there was no recovery of the lost biodiversity of the macrofauna and meiofauna. Future research should be focused toward recovery and restoration. For hard-bottoms this could take the form of restoration projects. For soft-bottoms the restoration strategy could be “restoration in place” because fresh sediments, which fall to the seafloor continuously, can cap the contaminated sediments over time. Both strategies require monitoring to ensure desired outcomes are achieved

    A global database of nitrogen and phosphorous excretion rates of aquatic animals

    Get PDF
    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582). © 2017 Ecological Society of Americ

    Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities

    No full text
    corecore