312 research outputs found
The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3
We present the study of the dependence of galaxy clustering on luminosity and
stellar mass in the redshift range 2z3.5 using 3236 galaxies with robust
spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the
two-point real-space correlation function for four volume-limited
stellar mass and four luminosity, M absolute magnitude selected,
sub-samples. We find that the scale dependent clustering amplitude
significantly increases with increasing luminosity and stellar mass indicating
a strong galaxy clustering dependence on these properties. This corresponds to
a strong relative bias between these two sub-samples of b/b=0.43.
Fitting a 5-parameter HOD model we find that the most luminous and massive
galaxies occupy the most massive dark matter haloes with
M = 10 h M. Similar to the
trends observed at lower redshift, the minimum halo mass M depends on
the luminosity and stellar mass of galaxies and grows from M
=10 hM to M=10 hM
from the faintest to the brightest among our galaxy sample, respectively. We
find the difference between these halo masses to be much more pronounced than
is observed for local galaxies of similar properties. Moreover, at z~3, we
observe that the masses at which a halo hosts, on average, one satellite and
one central galaxy is M4M over all luminosity ranges,
significantly lower than observed at z~0 indicating that the halo satellite
occupation increases with redshift. The luminosity and stellar mass dependence
is also reflected in the measurements of the large scale galaxy bias, which we
model as b(L)=1.92+25.36(L/L). We conclude our study
with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec.
5.5, changed Fig. 4 and Fig. 11, added reference
Measuring the Stellar Masses of z~7 Galaxies with Spitzer Ultrafaint Survey Program (SURFS UP)
We present Spitzer/IRAC observations of nine -band dropouts highly
magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our
Exploratory program (SURFS UP), which results in a total integration time of
~30 hr per IRAC band. We detect (>3sigma) in both IRAC bands the brightest of
these high-redshift galaxies, with [3.6]=23.80+-0.28 mag, [4.5]=23.78+-0.25
mag, and (H-[3.6])=1.17+-0.32 mag. The remaining eight galaxies are undetected
to [3.6]~26.4 mag and [4.5]~26.0 mag with stellar masses of ~5x10^7 M_sol. The
detected galaxy has an estimated magnification of mu=12+-4, which implies this
galaxy has an ultraviolet luminosity of L_1500~0.3 L*_{z=7} --- the lowest
luminosity individual source detected in IRAC at z>7. By modeling the broadband
photometry, we estimate the galaxy has an intrinsic star-formation rate of
SFR~1.3 M_sol/yr and stellar mass of M~2x10^9 M_sol, which gives a specific
star-formation rate of sSFR~0.7 Gyr^-1. If this galaxy had sustained this
star-formation rate since z~20, it could have formed the observed stellar mass
(to within a factor of ~2), we also discuss alternate star-formation histories
and argue the exponentially-increasing model is unlikely. Finally, based on the
intrinsic star-formation rate, we estimate this galaxy has a likely [C II] flux
of = 10^{-17} erg/s/cm2.Comment: Accepted to ApJL. 6 pages, 3 figures, 2 table
HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?
The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain
the source of the hard ionizing continuum that powers the HeII emission. We
have assembled a sample of 277 galaxies with a high quality spectroscopic
redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A
emitters. We study their spectral properties, measuring the fluxes, equivalent
widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show
HeII in emission, with rest frame equivalent widths EW0~1-7A, equally
distributed between galaxies with Lya in emission or in absorption. We find 11
high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13
high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and
an additional 12 possible HeII emitters. The properties of the individual broad
emitters are in agreement with expectations from a W-R model. On the contrary,
the properties of the narrow emitters are not compatible with such model,
neither with predictions of gravitational cooling radiation produced by gas
accretion. Rather, we find that the EW of the narrow HeII line emitters are in
agreement with expectations for a PopIII star formation, if the episode of star
formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1
only is enough to sustain the observed HeII flux. We conclude that narrow HeII
emitters are either powered by the ionizing flux from a stellar population rare
at z~0 but much more common at z~3, or by PopIII star formation. As proposed by
Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of
pristine gas at the periphery of galaxies from which PopIII may form, even down
to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in
PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value
predicted by Tornatore et al. (2007).Comment: accepted for publication in A&
The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey
We aim at improving constraints on the epoch of galaxy formation by measuring
the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS
Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the
simultaneous fitting with the GOSSIP+ software of observed UV rest-frame
spectra and photometric data from the u-band up to 4.5 microns using composite
stellar population models. We conclude from extensive simulations that at z>2
the joint analysis of spectroscopy and photometry combined with restricted age
possibilities when taking into account the age of the Universe substantially
reduces systematic uncertainties and degeneracies in the age derivation. We
find galaxy ages ranging from very young with a few tens of million years to
substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f
derived from the measured ages indicate that galaxies may have started forming
stars as early as z_f~15. We produce the formation redshift function (FzF), the
number of galaxies per unit volume formed at a redshift z_f, and compare the
FzF in increasing redshift bins finding a remarkably constant 'universal' FzF.
The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a
smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of
the same order as the observed rise in the star formation rate density (SFRD).
The ratio of the SFRD with the FzF gives an average SFR per galaxy of
~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these
redshifts. From the smooth rise in the FzF we infer that the period of galaxy
formation extends from the highest possible redshifts that we can probe at z~15
down to redshifts z~2. This indicates that galaxy formation is a continuous
process over cosmic time, with a higher number of galaxies forming at the peak
in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page
Dust properties of Lyman break galaxies at
We explore from a statistical point of view the far-infrared (far-IR) and
sub-millimeter (sub-mm) properties of a large sample of LBGs (22,000) at z~3 in
the COSMOS field. The large number of galaxies allows us to split it in several
bins as a function of UV luminosity, UV slope, and stellar mass to better
sample their variety. We perform stacking analysis in PACS (100 and 160 um),
SPIRE (250, 350 and 500 um) and AzTEC (1.1 mm) images. Our stacking procedure
corrects the biases induced by galaxy clustering and incompleteness of our
input catalogue in dense regions. We obtain the full IR spectral energy
distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as
a function of UV luminosity, UV slope, and stellar mass. The average IRX is
roughly constant over the UV luminosity range, with a mean of 7.9 (1.8 mag).
However, it is correlated with UV slope, and stellar mass. We investigate using
a statistically-controlled stacking analysis as a function of (stellar mass, UV
slope) the dispersion of the IRX-UVslope and IRX-M* plane. Our results enable
us to study the average relation between star-formation rate (SFR) and stellar
mass, and we show that our LBG sample lies on the main sequence of star
formation at z~3.Comment: Accepted to A&A, 17 Pages, 14 Figures, 2 Table
Limits on the LyC signal from z~3 sources with secure redshift and HST coverage in the E-CDFS field
Aim: We aim to measure the LyC signal from a sample of sources in the Chandra
deep field south. We collect star-forming galaxies (SFGs) and active galactic
nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space
Telescope (HST) coverage and multi-wavelength photometry are available. Method:
We selected a sample of about 200 sources at z~3. Taking advantage of HST
resolution, we applied a careful cleaning procedure and rejected sources
showing nearby clumps with different colours, which could be lower-z
interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band
selected Lya emitters) and 8 AGN (including 6 detected in X-rays). We measured
the LyC flux from aperture photometry in four narrow-band filters covering
wavelengths below a 912 A rest frame (3.11<z<3.53). We estimated the ratio
between ionizing (LyC flux) and 1400 A non-ionizing emissions for AGN and
galaxies. Results: By running population synthesis models, we assume an average
intrinsic L(1400 A)/L(900 A) ratio of 5 as the representative value for our
sample. With this value and an average treatment of the lines of sight of the
inter-galactic medium, we estimate the LyC escape fraction relative to the
intrinsic value (fesc_rel(LyC)). We do not directly detect ionizing radiation
from any individual SFG, but we are able to set a 1(2)sigma upper limit of
fesc_rel(LyC)<12(24)%. This result is consistent with other non-detections
published in the literature. No meaningful limits can be calculated for the
sub-sample of Lya emitters. We obtain one significant direct detection for an
AGN at z=3.46, with fesc_rel(LyC) = (72+/-18)%. Conclusions: Our upper limit on
fescrel(LyC) implies that the SFGs studied here do not present either the
physical properties or the geometric conditions suitable for efficient
LyC-photon escape.Comment: Accepted for publication in A&A on Jan 5th, 201
Suppressed star formation by a merging cluster system
We examine the effects of an impending cluster merger on galaxies in the large-scale structure (LSS) RX J0910 at z =1.105. Using multiwavelength data, including 102 spectral members drawn from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey and precise photometric redshifts, we calculate star formation rates and map the specific star formation rate density of the LSS galaxies. These analyses along with an investigation of the colourâmagnitude properties of LSS galaxies indicate lower levels of star formation activity in the region between the merging clusters relative to the outskirts of the system. We suggest that gravitational tidal forces due to the potential of the merging haloes may be the physical mechanism responsible for the observed suppression of star formation in galaxies caught between the merging clusters
Discovery of a rich proto-cluster at z=2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS)
[Abridged] We characterise a massive proto-cluster at z=2.895 that we found
in the COSMOS field using the spectroscopic sample of the VIMOS Ultra-Deep
Survey (VUDS). This is one of the rare structures at z~3 not identified around
AGNs or radio galaxies, so it is an ideal laboratory to study galaxy formation
in dense environments. The structure comprises 12 galaxies with secure
spectroscopic redshift in an area of 7'x8', in a z bin of Dz=0.016. The
measured galaxy number overdensity is delta_g=12+/-2. This overdensity has
total mass of M~8.1x10^(14)M_sun in a volume of 13x15x17 Mpc^3. Simulations
indicate that such an overdensity at z~2.9 is a proto-cluster that will
collapse in a cluster of total mass M~2.5x10^(15)M_sun at z=0. We compare the
properties of the galaxies within the overdensity with a control sample at the
same z but outside the overdensity. We did not find any statistically
significant difference between the properties (stellar mass, SFR, sSFR, NUV-r,
r-K) of the galaxies inside and outside the overdensity. The stacked spectrum
of galaxies in the overdensity background shows a significant absorption
feature at the wavelength of Lya redshifted at z=2.895 (lambda=4736 A), with a
rest frame EW = 4+/- 1.4 A. Stacking only background galaxies without
intervening sources at z~2.9 along their line of sight, we find that this
absorption feature has a rest frame EW of 10.8+/-3.7 A, with a detection S/N of
~4. These EW values imply a high column density (N(HI)~3-20x10^(19)cm^(-2)),
consistent with a scenario where such absorption is due to intervening cold gas
streams, falling into the halo potential wells of the proto-cluster galaxies.
However, we cannot exclude the hypothesis that this absorption is due to the
diffuse gas within the overdensity.Comment: 15 pages, 9 figures, accepted for publication in A&A (revised version
after referee's comments and language editing
The VIMOS Ultra-Deep Survey (VUDS): fast increase of the fraction of strong Lyman alpha emitters from z=2 to z=6
Aims. The aim of this work is to constrain the evolution of the fraction of
Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure
the stellar escape fraction of Lya photons over the same redshift range.
Methods. We exploit the ultradeep spectroscopic observations collected by the
VIMOS Ultra Deep Survey (VUDS) to build an unique, complete and unbiased sample
of 4000 spectroscopically confirmed star forming galaxies at 2<z<6. Our galaxy
sample UV luminosities brighter than M* at 2<z<6, and luminosities down to one
magnitude fainter than M* at 2<z<3.5. Results. We find that 80% of the star
forming galaxies in our sample have EW0(Lya)<10A, and correspondingly
fesc(Lya)<1%. By comparing these results with literature, we conclude that the
bulk of the Lya luminosity at 2<z<6 comes from galaxies that are fainter in the
UV than those we sample in this work. The strong Lya emitters constitute, at
each redshift, the tail of the distribution of the galaxies with extreme
EW0(Lya) and fesc(Lya) . This tail of large EW0 and fesc(Lya) becomes more
important as the redshift increases, and causes the fraction of Lya with EW0>
25A to increase from 5% at z=2 to 30% at z=6, with the increase being
relatively stronger beyond z=4. We observe no difference, for the narrow range
of UV luminosities explored in this work, between the fraction of strong Lya
emitters among galaxies fainter or brighter than M*, although the fraction for
the FUV faint galaxies evolves faster, at 2<z<3.5, than for the bright ones. We
do observe an anticorrelation between E(B-V) and fesc(Lya): generally galaxies
with high fesc(Lya) have also small amounts of dust (and viceversa). However,
when the dust content is low (E(B-V)<0.05) we observe a very broad range of
fesc(Lya), ranging from 10^-3 to 1. This implies that the dust alone is not the
only regulator of the amount of escaping Lya photons.Comment: 12 pages, 6 figures, A&A in pres
- âŠ