20 research outputs found

    Dynamics of the peripheral membrane protein P2 from human myelin measured by neutron scattering - a comparison between wild-type protein and a hinge mutant

    No full text
    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations

    Sub-atomic resolution crystal structures reveal conserved geometric outliers at functional sites

    Get PDF
    Abstract Myelin protein 2 (P2) is a peripheral membrane protein of the vertebrate nervous system myelin sheath, having possible roles in both lipid transport and 3D molecular organization of the multilayered myelin membrane. We extended our earlier crystallographic studies on human P2 and refined its crystal structure at an ultrahigh resolution of 0.72 Å in perdeuterated form and 0.86 Å in hydrogenated form. Characteristic differences in C–H…O hydrogen bond patterns were observed between extended β strands, kinked or ending strands, and helices. Often, side-chain C–H groups engage in hydrogen bonding with backbone carbonyl moieties. The data highlight several amino acid residues with unconventional conformations, including both bent aromatic rings and twisted guanidinium groups on arginine side chains, as well as non-planar peptide bonds. In two locations, such non-ideal conformations cluster, providing proof of local functional strain. Other ultrahigh-resolution protein structures similarly contain chemical groups, which break planarity rules. For example, in Src homology 3 (SH3) domains, a conserved bent aromatic residue is observed near the ligand binding site. Fatty acid binding protein (FABP) 3, belonging to the same family as P2, has several side chains and peptide bonds bent exactly as those in P2. We provide a high-resolution snapshot on non-ideal conformations of amino acid residues under local strain, possibly relevant to biological function. Geometric outliers observed in ultrahigh-resolution protein structures are real and likely relevant for ligand binding and conformational changes. Furthermore, the deuteration of protein and/or solvent are promising variables in protein crystal optimization

    A quasielastic neutron scattering investigation on the molecular self-dynamics of human myelin protein P2

    No full text
    Abstract The human myelin protein P2 is a membrane binding protein believed to maintain correct lipid composition and organization in peripheral nerve myelin. Its function is related to its ability to stack membranes, and this function can be enhanced by the P38G mutation, whereby the overall protein structure does not change but the molecular dynamics increase. Mutations in P2 are linked to human peripheral neuropathy. Here, the dynamics of wild-type P2 and the P38G variant were studied using quasielastic neutron scattering on time scales from 10 ps to 1 ns at 300 K. The results suggest that the mutant protein dynamics are increased on both the fastest and the slowest measured time scales, by increasing the dynamics amplitude and/or the portion of atoms participating in the movement

    Human myelin protein P2:from crystallography to time-lapse membrane imaging and neuropathy-associated variants

    Get PDF
    Abstract Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot–Marie–Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patients. To shed light on the structure and function of these P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations and lipid binding assays. The crystal and solution structures of the I50del, M114T and V115A variants of P2 showed minor differences to the wild-type protein, whereas their thermal stability was reduced. Vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated formation of double-membrane structures induced by P2, which could be related to its function in stacking of two myelin membrane surfaces in vivo. In order to better understand the links between structure, dynamics and function, the crystal structure of perdeuterated P2 was refined from room temperature data using neutrons and X-rays, and the results were compared to simulations and cryocooled crystal structures. Our data indicate similar properties for all known human P2 CMT variants; while crystal structures are nearly identical, thermal stability and function of CMT variants are impaired. Our data provide new insights into the structure–function relationships and dynamics of P2 in health and disease

    Structure and pharmacology of two bicyclic glutamate analogues at AMPA and kainate receptors

    No full text
    Ionotropic glutamate receptors (iGluRs) are involved in most of the fast excitatory synaptic transmission in the central nervous system. These receptors are important for learning and memory formation, but are also involved in the development of diseases such as Alzheimer's disease, epilepsy and depression. To understand the function of different types of iGluRs, selective agonists are invaluable as pharmacological tool compounds. Here, we report binding affinities of two bicyclic, conformationally restricted analogues of glutamate (CIP-AS and LM-12b) at AMPA (GluA2 and GluA3) and kainate receptor subunits (GluK1-3 and GluK5). Both CIP-AS and LM-12b were found to be GluK3-preferring agonists, with Ki of 6 and 22 nM, respectively, at recombinant GluK3 receptors. The detailed binding mode of CIP-AS and LM-12b in the ligand-binding domains of the AMPA receptor subunit GluA2 (GluA2-LBD) and the kainate receptor subunits GluK1 (GluK1-LBD) and GluK3 (GluK3-LBD) was investigated by X-ray crystallography. CIP-AS stabilized all three receptor constructs in conformations similar to those with kainate. Remarkably, whereas LM-12b bound in a similar manner to CIP-AS in GluA2-LBD and GluK3-LBD, it introduced full closure of the ligand-binding domain in GluK1-LBD and formation of a D1-D2 interlobe hydrogen bond between Glu441 and Ser721, as also observed with glutamate. As the binding affinity of LM-12b at GluK1 is 3c8-fold better than that for CIP-AS (Ki of 85 and 656 nM, respectively), it shows that small changes in agonist structure can lead to prominent differences in structure and function
    corecore