344 research outputs found
Scanning tunneling microscopy simulations of poly(3-dodecylthiophene) chains adsorbed on highly oriented pyrolytic graphite
We report on a novel scheme to perform efficient simulations of Scanning
Tunneling Microscopy (STM) of molecules weakly bonded to surfaces. Calculations
are based on a tight binding (TB) technique including self-consistency for the
molecule to predict STM imaging and spectroscopy. To palliate the lack of
self-consistency in the tunneling current calculation, we performed first
principles density-functional calculations to extract the geometrical and
electronic properties of the system. In this way, we can include, in the TB
scheme, the effects of structural relaxation upon adsorption on the electronic
structure of the molecule. This approach is applied to the study of
regioregular poly(3-dodecylthiophene) (P3DDT) polymer chains adsorbed on highly
oriented pyrolytic graphite (HOPG). Results of spectroscopic calculations are
discussed and compared with recently obtained experimental datComment: 15 pages plus 5 figures in a tar fil
Boron and nitrogen codoping effect on transport properties of carbon nanotubes
International audienceThis paper reports a theoretical study of the effect of boron and nitrogen codoping on the transport properties of carbon nanotubes (CNTs) at the mesoscopic scale. A new tight-binding parametrization has been set up, based on density functional theory calculations, that enables a reliable description of the electronic structure of realistic BN-doped CNTs. With this model, we have carried out a deep analysis of the electronic mean free path (MFP) exhibited by these nanostructures. The MFP is highly sensitive to the geometry of the scattering centers. We report that the relative distance between B and N atoms in the network influences drastically the electronic conduction. Moreover, we point out that the scattering induced by small hexagonal BN domains in the carbon network is less important than the BN-pair case
Contact resistance in graphene-based devices
We report a systematic study of the contact resistance present at the
interface between a metal (Ti) and graphene layers of different, known
thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate
that the contact resistance is quantitatively the same for single-, bi-, and
tri-layer graphene (), and is in all cases
independent of gate voltage and temperature. We argue that the observed
behavior is due to charge transfer from the metal, causing the Fermi level in
the graphene region under the contacts to shift far away from the charge
neutrality point
In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation
The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition.
A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures
Estradiol and Bisphenol A Stimulate Androgen Receptor and Estrogen Receptor Gene Expression in Fetal Mouse Prostate Mesenchyme Cells
doi:10.1289/ehp.9804Hormonal alterations during development have lifelong effects on the prostate gland. Endogenous estrogens, including 17β-estradiol (E2), and synthetic estrogenic endocrine disruptors, such as bisphenol A (BPA), have similar effects on prostate development. Increasing exposure to estrogens within the low-dose, physiologic range results in permanent increases in the size and androgen responsiveness of the prostate, whereas exposure within the high-dose, pharmacologic range has the opposite effects
Warren McCulloch and the British cyberneticians
Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. He interacted regularly with most of the main figures on the British cybernetics scene, forming close friendships and collaborations with several, as well as mentoring others. Many of these interactions stemmed from a 1949 visit to London during which he gave the opening talk at the inaugural meeting of the Ratio Club, a gathering of brilliant, mainly young, British scientists working in areas related to cybernetics. This paper traces some of these relationships and interaction
Localization of Dirac electrons by Moire patterns in graphene bilayers
We study the electronic structure of two Dirac electron gazes coupled by a
periodic Hamiltonian such as it appears in rotated graphene bilayers. Ab initio
and tight-binding approaches are combined and show that the spatially periodic
coupling between the two Dirac electron gazes can renormalize strongly their
velocity. We investigate in particular small angles of rotation and show that
the velocity tends to zero in this limit. The localization is confirmed by an
analysis of the eigenstates which are localized essentially in the AA zones of
the Moire patterns.Comment: 4 pages, 5 figure
Magneto-optical Selection Rules in Bilayer Bernal Graphene
The low-frequency magneto-optical properties of bilayer Bernal graphene are
studied by the tight-binding model with four most important interlayer
interactions taken into account. Since the main features of the wave functions
are well depicted, the Landau levels can be divided into two groups based on
the characteristics of the wave functions. These Landau levels lead to four
categories of absorption peaks in the optical absorption spectra. Such
absorption peaks own complex optical selection rules and these rules can be
reasonably explained by the characteristics of the wave functions. In addition,
twin-peak structures, regular frequency-dependent absorption rates and complex
field-dependent frequencies are also obtained in this work. The main features
of the absorption peaks are very different from those in monolayer graphene and
have their origin in the interlayer interactions
- …