141 research outputs found

    Legislation On The Preparation Of Medicinal Products In European Pharmacies And The Council Of Europe Resolution

    Get PDF
    The rights of patients should be sufficiently protected even when an appropriate authorised medicine does not exist or is unavailable on the market. The Resolution, which was adopted by the Committee of Ministers of the Council of Europe in 2011, aims at harmonising quality and safety standards for pharmacy preparation of medicinal products in Europe.Two pillars of EU regulation and the exceptions to them The system of regulation of medicinal products is built upon two pillars: the marketing authorisation of the medicinal product and the licence for manufacturing and wholesale. This article provides insight into the recent interpretation of the European Court of Justice concerning the scope of European Union (EU) regulation of medicinal products and the circumstances in which the EU regulation does not apply: pharmacy preparations, specialties and the compassionate use of medicines, including manufacturing licence.EU regulation and the Resolution concerning pharmacy preparation Pharmacy preparations are allowed under certain strict conditions according to EU regulations. However, pharmacies specialised in preparation and distributing medicinal products to local pharmacies do not fulfil these strict conditions in EU regulation. Apart from the legal context, relevant standards for safety and quality assurance are needed in Europe in order to protect patients’ rights and to avoid risks from pharmacy preparations.Discussion and conclusions The Council of Europe Resolution provides a means of establishing standards for safety and quality assurance for pharmacy preparations through Good Manufacturing Practice Guidelines. The Resolution is available to authorities and pharmacists in order to prevent incidents with medicines prepared in pharmacies which may threaten patients’ safety. The authors conclude that pharmacy practices have changed over time in Europe and this may imply a reason for a reform of EU regulation on medicinal products

    Identification of a common HLA-DP4-restricted T-cell epitope in the conserved region of the respiratory syncytial virus G protein

    Get PDF
    The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4(+)-T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n = 2) or almost identical (n = 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n = 41) or mild (n = 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined

    A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition

    Get PDF
    The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10

    Low Sensitivity of BinaxNOW RSV in Infants

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants. Early detection of RSV can optimize clinical management and minimize use of antibiotics. BinaxNOW RSV (BN) is a rapid antigen detection test that is widely used. We aimed to validate the sensitivity of BN in hospitalized and nonhospitalized infants against the gold standard of molecular diagnosis. METHODS: We evaluated the performance of BN in infants with acute respiratory tract infections with different degrees of disease severity. Diagnostic accuracy of BN test results were compared with molecular diagnosis as reference standard. RESULTS: One hundred sixty-two respiratory samples from 148 children from October 2017 to February 2019 were studied. Sixty-six (40.7%) samples tested positive for RSV (30 hospitalizations, 31 medically attended episodes not requiring hospitalization, and 5 nonmedically attended episodes). Five of these samples tested positive with BN, leading to an overall sensitivity of BN of 7.6% (95% confidence interval [CI], 3.3%-16.5%) and a specificity of 100% (95% CI, 96.2%-100%). Sensitivity was low in all subgroups. CONCLUSIONS: We found a low sensitivity of BN for point-of-care detection of RSV infection. BinaxNOW RSV should be used and interpreted with caution

    The spatial aspects of fairness

    Get PDF
    As well as their family background, an individual's chances in life are determined by the opportunities available to them in their geographical context. This chapter therefore deals with the spatial aspects of fairness. It focuses, firstly, on socio-economic factors which are not randomly distributed in space (i.e. they have a geographical pattern). Secondly, it focuses, not on first nature geographical differences which cannot be changed (such as the presence of mountains), but on second nature geographical factors (such as access to basic services or hospitals) which can be altered and which are important in overcoming a region's natural disadvantages. It then links the two

    A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition

    Get PDF
    The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10

    Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals

    Get PDF
    BACKGROUND: The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. METHODS AND FINDINGS: We immortalized IgG(+) memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. CONCLUSIONS: This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design

    Identification of antibody neutralization epitopes on the fusion protein of human metapneumovirus

    Get PDF
    Human metapneumovirus (hMPV) is genetically related to respiratory syncytial virus (RSV); both cause respiratory tract illnesses ranging from a mild cough to bronchiolitis and pneumonia. The F protein-directed monoclonal antibody (mAb) palivizumab has been shown to prevent severe lower respiratory tract RSV infection in animals and humans. We have previously reported on a panel of mAbs against the hMPV F protein that neutralize hMPV in vitro and, in two cases, in vivo. Here we describe the generation of hMPV mAb-resistant mutants (MARMs) to these neutralizing antibodies. Sequencing the F proteins of the hMPV MARMs identified several neutralizing epitopes. Interestingly, some of the epitopes mapped on the hMPV F protein coincide with homologous regions mapped previously on the RSV F protein, including the site against which the broadly protective mAb palivizumab is directed. This suggests that these homologous regions play important, conserved functions in both viruses

    Complete Genome Sequence of Avian Paramyxovirus (APMV) Serotype 5 Completes the Analysis of Nine APMV Serotypes and Reveals the Longest APMV Genome

    Get PDF
    Avian paramyxoviruses (APMV) consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt) long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3'N-P/V/W-M-F-HN-L-5' with intergenic regions of 4-57 nt. The genome length follows the 'rule of six' and contains a 55-nt leader sequence at the 3'end and a 552 nt trailer sequence at the 5' end. The phosphoprotein (P) gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R downward arrowF) conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2-9. The availability of sequence information for all known APMV serotypes will facilitate studies in epidemiology and vaccinology

    Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques

    Get PDF
    A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1–8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials
    corecore