302 research outputs found

    Direct observation of the potential distribution within organic light emitting diodes under operation

    Get PDF
    We show the first direct measurement of the potential distribution within organic light emitting diodes (OLEDs) under operation and hereby confirm existing hypotheses about charge transport and accumulation in the layer stack. Using a focused ion beam to mill holes in the diodes we gain access to the cross section of the devices and explore the spatially resolved potential distribution in situ by scanning Kelvin probe microscopy under different bias conditions. In bilayer OLEDs consisting of tris(hydroxyquinolinato) aluminum (Alq_3)/N, N ′-bis(naphthalene-1-yl)-N,N ′-bis(phenyl) benzidine (NPB) the potential exclusively drops across the Alq_3 layer for applied bias between onset voltage and a given transition voltage. These findings are consistent with previously performed capacitance–voltage measurements. The behavior can be attributed to charge accumulation at the interface between the different organic materials. Furthermore, we show the potential distribution of devices with different cathode structures and degraded devices to identify the cathode interface as main culprit for decreased performance

    Acute vs. Chronic Citrulline Malate Supplementation on Muscle Fatigue

    Get PDF
    Citrulline malate has been proposed to aid in reducing fatigue by increasing blood flow through promoting an increase in the nitric oxide synthase pathway along with the ability to remove ammonia and lactate accumulations. Results on the effectiveness of an acute supplementation are mixed, but it is proposed that regular consumption may help to attenuate the onset of fatigue during exercise. PURPOSE: To investigate the effects of acute and chronic citrulline malate supplementation on fatigue rate of the quadriceps. METHODS: Recreationally trained males (n=18, 24±5 yr, 83±14 kg, 174±6 cm) participated in seven testing sessions. The familiarization session consisted of participants performing a graded exercise test to determine max power output. In a randomized, counterbalanced order, participants consumed a placebo (PL) and citrulline malate (CM) treatment for two separate dosing periods. For each dosing period, participants reported on three separate days with seven days between each visit. The first experimental testing session for each dosing period was considered the baseline day (BL), the second session the acute day (D1), and the third session the chronic day (D2). For chronic supplementation, all participants consumed each treatment for seven consecutive days. The exercise protocol all testing sessions and the four supplemental testing sessions included exercising on a cycle ergometer at 50-60% of their max power output for 30 min. Following the bout, all participants performed the Thorstensson test on an isokinetic dynamometer for torque, power, and fatigue rate of the dominate leg quadriceps. RESULTS: The acute supplement x time interactions were not significant (p\u3e0.05) for peak power (PL BL 469+81 W, PL D1 490+97 W vs. CM BL 465+85 W, CM D1 480+103 W), peak torque (PL BL 150+26 Nm, PL D1 157+32 Nm vs. CM BL 149+26 Nm, CM D1 156+33 Nm), fatigue rate (PL BL 57+9%, PL D1 57+10% vs. CM BL 57+10%, CM D1 56+9%), and heart rate (PL BL 156+17 bpm, PL D1 146+13 bpm vs. CM BL 155+11 bpm, CM D1 146+11 bpm). The chronic supplement x time interactions were not significant (p\u3e0.05) for peak power (PL BL 469+81 W, PL D2 501+99 W vs. CM BL 464+85 W, CM D2 501+81 W), peak torque (PL BL 150+26 Nm, PL D2 161+31 Nm vs. CM BL 149+27 Nm, CM D2 161+26 Nm), fatigue rate (PL BL 57+9%, PL D2 58+9% vs. CM BL 57+10%, CM D2 58+9%), and heart rate (PL BL 156+17 bpm, PL D2 146+9 bpm vs. CM BL 155+11 bpm, CM D2 146+9 bpm). CONCLUSION: The results of this study suggest that neither acute or chronic supplementation of CM had an effect on recovery or fatigue rate of the quadriceps. Based on the data collected there were no significant differences between the recorded values for torque and power for each participant

    Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous

    Get PDF
    While the susceptibility of CH3NH3PbI3 to water is well documented, water influence on device performance is not well understood. Herein we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at much lower humidity than previously thought. We propose a molecular model where water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb-I cage. Furthermore, the exposure of CH3NH3PbI3 to ambient environment increases the photocurrent of films in lateral devices by more than one order of magnitude. The observed slow component in the photocurrent buildup indicates that the effect is associated with enhanced proton conduction when light is combined with water and oxygen exposure.C.M. and M.S. acknowledge support by the Heidelberg Graduate School of Fundamental Physics. A.A.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0388
    corecore