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Abstract 

There is increasing interest in the use of multiple measurement types, including indirect 

(geophysical) methods, to constrain hydrologic interpretations.  To date, most examples 

integrating geophysical measurements in hydrology have followed a three-step, uncoupled 

inverse approach.  This approach begins with independent geophysical inversion to infer the 

spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity).  The 

geophysical property is then converted to a hydrologic property (e.g. water content) through a 

petrophysical relation.  The inferred hydrologic property is then used either independently or 

together with direct hydrologic observations to constrain a hydrologic inversion.  We present an 

alternative approach, coupled inversion, which relies on direct coupling of hydrologic models 

and geophysical models during inversion. We compare the abilities of coupled and uncoupled 
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inversion using a synthetic example where surface-based electrical conductivity surveys are used 

to monitor one-dimensional infiltration and redistribution.  Through this illustrative example, we 

show that the coupled approach can provide significant reductions in uncertainty for hydrologic 

properties and associated predictions if the underlying model is a faithful representation of the 

hydrologic processes.  However, if the hydrologic model exhibits structural errors, the coupled 

inversion may not improve the hydrologic interpretation.  Despite this limitation, our results 

support the use of coupled hydrogeophysical inversion both for the direct benefits of reduced 

errors during inversion and due to the secondary benefits that accrue due to the extensive 

communication and sharing of data necessary to produce a coupled model, which will likely lead 

to more thoughtful use of geophysical data in hydrologic studies. 
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Introduction 

Quantitative subsurface hydrologic analysis is based on the conceptualization, development, and 

testing of hydrologic models [Neuman et al., 2003].  Model conceptualization is the process of 

observing a system and proposing a simplified representation of the system that incorporates the 

features deemed important to the processes under observation (e.g. water flow or solute 

transport).  Model development translates the proposed conceptual model (or models) to a 

mathematical or numerical model(s) that can be used to test a hydrologic hypothesis.  Model 

testing is an analytical process, wherein the predictions of the model(s) are compared 

quantitatively with the available data.  The goals of model testing are: to find the values of the 

adjustable parameters in a model that result in the best fit of the model predictions to the data 

(calibration) [e.g. Kim et al., 1999; Poeter and Hill, 1999, Vrugt et al., 2009b]; to quantify the 

goodness of fit and assess parameter non-uniqueness for the calibrated model [e.g. Vrugt et al., 

2003; Mugunthan and Shoemaker, 2006]; and, increasingly, to compare the goodness of fit of 

multiple models to the data [Neuman, 2003; Ye et al., 2004; Troldborg et al., 2007, Vrugt and 

Robinson, 2007]. The results of model testing can be used to revise model conceptualization 

and/or development as well as to guide the design of future data collection activities.  In short, 

the three phases of model-based hydrologic analysis can be described as: 1) hypothesizing which 

subsurface structures and processes are significant; 2) translating this hypothesis into 

mathematical expressions and parameterizations; and 3) testing the hydrologic models against 

observations.  

 

To test multiple conceptual or mathematical models effectively, the inverse approach used for 

parameter calibration must be efficient in extracting relevant information from the observed data.  

 - 3 - 



The efficiency of parameter calibration depends on both the inverse algorithm selected and the 

way in which the inverse problem is posed.  Inverse analysis is common to most scientific 

disciplines.  Hydrologic science has adopted and developed many inverse approaches.  But, until 

recently, there have been few studies regarding the formulation of efficient inversion strategies 

that incorporate multiple measurement types, including indirect measurements.  The 

development of such inversion strategies for hydrologic problems is critical as the use of 

geophysical methods becomes increasingly common for monitoring subsurface flow and 

transport. 

 

Geophysics is a mature discipline that has made fundamental contributions to a range of 

scientific disciplines [e.g. National Academy of Sciences, 2000]. Many of these contributions 

stem from the ability of geophysical methods to provide unparalleled views into the earth.  As a 

result, geophysics is a cornerstone of oil and mineral exploration and production.  Increasingly, 

geophysical imaging of the subsurface is also being used to conceptualize and develop 

hydrologic models through mapping subsurface structures and improving estimates of the spatial 

distribution of hydrologic properties [e.g. Hubbard and Rubin, 2000; Vereecken et al., 2004].  

Advanced joint inversion methods have been developed to use multiple geophysical methods to 

reduce the non-uniqueness of the estimated structural models [e.g. Vozoff and Jupp, 1975; 

Gallardo and Meju, 2003 and 2004; Linde et al., 2006a].  In addition, geostatistical methods 

have been developed to estimate hydrologic property distributions based on statistical 

correlations present in geophysical images [e.g. Cassiani et al., 1998; Hubbard et al., 1999; Yeh 

et al., 2002; Chen et al., 2004].  Finally, hydrologic structure and parameter distributions have 

been estimated simultaneously using geophysical and hydrologic data [e.g. Hyndman et al., 
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1994; Hyndman and Gorelick, 1996; Chen et al., 2006, Linde et al. 2006b].  In general, there is 

wide and growing recognition of the value of geophysics for subsurface imaging to aid in the 

conceptualization of hydrologic models. 

 

The use of geophysical data for testing hydrologic models also has a long history.  For example, 

many studies have used electrical [e.g. Daily, 1992; Park, 1998; Kemna et al., 2002; Sandberg et 

al., 2002; French and Binley, 2004; Halihan et al., 2005; Vanderborght et al., 2005; Cassiani et 

al., 2006; Chambers et al., 2006] and/or electromagnetic [e.g. Binley et al., 2001; Day-Lewis et 

al., 2003; Cassiani et al., 2004; Lambot et al., 2004; Turesson, 2006; Deiana et al., 2008; Looms 

et al., 2008b] methods to monitor changes in water content or solute concentration with time. 

Despite the differences in hydrologic targets and geophysical methods used in these studies, they 

have all followed the sequential approach to using the geophysical data to test a hydrologic 

model outlined in Figure 1A, which we refer to as uncoupled hydrogeophysical inversion. 

Uncoupled hydrogeophysical inversion follows three independent steps: 

(i) geophysical survey data are inverted to estimate the spatial distribution of a 

geophysical property throughout the subsurface region of interest (Figure 1A, 

geophysical inversion); 

(ii) a petrophysical relation [e.g. Archie, 1942; Topp et al., 1980; Binley et al., 2005] 

is used to convert the geophysical property map[s] to hydrologic state 

distributions at each measurement time (Figure 1A, dashed line linking 

geophysical inversion to hydrologic inversion); and  
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(iii) the inferred hydrologic states are used either independently or together with 

directly measured hydrologic states to test hydrologic models (Figure 1A, 

hydrologic inversion).   

The gray process boxes in Figure 1A are present to illustrate how multiple data streams could be 

included in the uncoupled analysis.  In the examples presented here, only one data stream 

(electrical conductivity data) is used.  This approach, using a single data stream, is illustrated by 

the black process boxes. 

 

Uncoupled inversion propagates measurement errors and uncertainties related to parameter 

resolution and uniqueness that arise during the independent inversion of the geophysical data to 

the hydrologic analysis through the petrophysical relation. A particular issue stems from the fact 

that geophysical imaging typically requires a large number of parameters to retain the flexibility 

necessary to capture arbitrary, complex distributions of properties in the subsurface (e.g. the 

electrical conductivity distribution associated with a contaminant plume).  As a result, 

geophysical inverse procedures commonly require the use of prior information (e.g. a 

smoothness constraint) to stabilize under-constrained problems [e.g. Menke, 1984]. It has been 

recognized that this regularization may not reflect the hydrologic conditions and can limit the 

value of hydraulic property estimates derived from geophysical observations [Day-Lewis et al., 

2005; Chen et al., 2006, and Slater, 2007]. 

 

There have been several alternatives proposed to improve the uncoupled inversion approach.  

The petrophysical conversion can be improved using apparent calibration relationships that vary 

with location to compensate for the impacts of the spatially variable sensitivity of measurement 

 - 6 - 



methods and associated inversion artifacts [e.g. Moysey et al., 2005; Singha and Moysey, 2006]. 

In addition, temporal relaxation techniques can be used in the geophysical inversion to interpret 

multiple time slices simultaneously, thereby effectively reducing the number of free parameters 

to be estimated [Day-Lewis et al., 2002].  Finally, some joint inversion approaches allow for 

simultaneous determination of geophysical property distributions and petrophysical relations 

[e.g. Hyndman et al., 1994; Hyndman and Gorelick, 1996; Chen et al., 2006; Linde et al., 

2006b].  However, all of these proposed advances still rely on an independent geophysical 

inversion step to infer hydrologic states. 

 

We examine an alternative approach to uncoupled hydrogeophysical inversion for model testing.  

The approach, hereafter referred to as coupled hydrogeophysical inversion [Ferré et al, 2009], is 

based on the premise that the goal of model testing is to determine the degree of consistency 

between a proposed hydrologic model and associated observations, thereby assessing the likely 

validity of a proposed hydrologic model.  From this basis, it seems most reasonable that the 

geophysical data should be interpreted in the context of the proposed hydrologic model.  This 

differs from the joint inversion approaches outlined previously.  In the joint approaches, a 

relationship between hydrologic and geophysical (or between two geophysical) properties is 

assumed, but the hydrologic model is not used to guide the geophysical interpretation [Ferré et 

al, 2009]. 

 

The workflow of coupled inversion, shown in Figure 1B, is similar to that used by Rucker and 

Ferré (2004) and Kowalski et al. (2005), which was summarized by Ferré et al. (2009).  It is 

typical of non-linear optimization problems where an initial parameter set is proposed, used to 
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simulate observed measurements, and then updated based on misfit between the simulated and 

observed data values.  The distinguishing factor in the coupled inversion strategy is that, for any 

observed geophysical dataset, we couple a hydrologic and geophysical model to represent the 

forward model in the optimization.  In practice, this is achieved through a straightforward and 

flexible process where an initial set of hydraulic parameters is proposed and a forward 

hydrologic model (e.g. flow and reactive transport) is run using these parameter values.  The 

model-predicted hydrologic states (e.g. water content) are converted to geophysical properties 

using petrophysical relations.  The resulting geophysical property distributions are used to 

predict the response for each measurement method at each observation time and location using 

geophysical (forward) models.  During inversion, the hydraulic properties and the petrophysical 

model parameter values are optimized to minimize the difference between predicted and 

measured geophysical observations.  In Figure 1-B, the gray process boxes illustrate how the 

coupled inversion approach could use multiple data streams.  In the examples presented here, 

only one data stream (electrical conductivity) is used as illustrated by the black process boxes. 

 

The coupled and uncoupled approaches to inversion have several distinct, yet important 

differences that can impact both the computational effort and the uniqueness of the 

interpretations.  Coupled inversion does not require a geophysical imaging step, thereby avoiding 

geophysical resolution problems related to the estimation of a large number of poorly 

constrained parameters.  This alleviates the need to construct point-specific apparent calibration 

relationships to account for the effects of the spatially variable measurement sensitivity [Moysey 

et al., 2006].  This is especially important when the spatial sensitivity of the geophysical method 

depends on the spatial distribution of the hydrologic state of interest [Klenke and Flint, 1991; 
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Ferré et al., 1996; and Furman et al., 2003].  Another advantage is that explicit assumptions 

regarding the spatial continuity of geophysical properties (e.g. smoothness) are no longer 

required to stabilize the geophysical component of the inverse problem because the hydrologic 

model defines the spatial arrangement of geophysical properties using physically-based 

predictions of the hydrologic properties.  Temporal regularization methods are also no longer 

required because the temporal dynamics are also enforced by physics underlying the hydrologic 

model.  Furthermore, because the underlying hydraulic properties are estimated directly, there is 

no need to consider joint inverse techniques explicitly.  Rather, all of the data are considered in a 

single inversion and any of the correlations among measurement types that form the basis of 

joint inversion techniques (e.g. cross gradients in Gallardo and Meju, 2004) arise naturally by 

coupling the process model (i.e. the hydrologic model) and the geophysical models.  In 

summary, because coupled inversion interprets the geophysical data in the context of the 

proposed hydrologic model, it provides a better test of the consistency of the proposed 

hydrologic model with the geophysical observations. 

 

Despite the potential advantages of coupled inversion, relatively few contributions have used this 

method to constrain hydrologic models with geophysical data [Rucker and Ferré, 2004; 

Kowalsky et al., 2004, 2005, 2009; Sicilia and Moysey, 2007; Finsterle et al., 2008; Looms et al., 

2008a; Lehikoinen et al., 2009].  None of these investigations has directly compared coupled and 

uncoupled approaches for model testing.   

 

In this study, we demonstrate the advantages and limitations of coupled hydrogeophysical 

inversion using an illustrative example of infiltration into the unsaturated zone monitored by 
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electrical conductivity surveys.  We use a synthetic example with known hydrologic and 

petrophysical properties to allow for a quantitative comparison of the accuracy of uncoupled and 

coupled hydrogeophysical inversion approaches.  This relatively simple example allows us to 

isolate the effects of coupled and uncoupled inversion from complications arising from soil and 

petrophysical parameter heterogeneity, boundary condition uncertainty, and model structural 

error.  In particular, we examine the impacts of structural errors in the model on 

hydrogeophysical inversion by comparing inversions performed with two different data sets.  

The first data set is based on the analytically tractable Philip (1957) infiltration model, which 

assumes a homogeneous soil.  The second data set is generated using a numerical model for 

unsaturated flow in a heterogeneous medium (HYDRUS 1D; Simunek et al., 1999).  The 

homogeneous model is used for the inversion of both data sets, thereby introducing model 

structural errors for the case where the subsurface is actually heterogeneous.  This latter analysis 

is intended to represent the common practice of applying hydrologic models and parameter 

distributions that are considerably simpler than reality to make numerical inversion tractable.  

 

Problem Statement  

Our objective is to compare the performance of coupled and uncoupled hydrogeophysical 

inversion.  We examine the ability of each approach to constrain soil properties during an 

infiltration event in a homogeneous soil.  In addition, we present an example to assess whether 

the inversion results are affected by the introduction of model structural errors. 

 

The specific problem we consider is the use of electrical conductivity to monitor the advance of a 

wetting front during one-dimensional infiltration under a zero-ponding-depth boundary condition 
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at the ground surface into a porous medium with uniform initial pressure head.  After five days 

of infiltration, the monitoring of water redistribution with electrical conductivity continues for an 

additional 15 days with a zero-flux boundary condition maintained at the ground surface.  The 

geophysical data consisted of a time series of measurements made with multiple electrical 

conductivity arrays located at the ground surface. The arrays have a common midpoint that is 

centered in the infiltration area.  We use these arrays to monitor one-dimensional water flow with 

the assumption that flow is predominantly vertical and that the infiltration area is large compared 

to the maximum electrode separation. For the maximum current electrode separation considered 

(45 m), the synthetic system could represent an artificial recharge facility or an ephemeral stream 

or a lake.  However, the entire system (depth of wetting front, electrode separations, scale of 

lateral heterogeneity, and measurement time interval) could be scaled down or scaled up without 

loss of generality.  

 

In the work presented herein, we consider two flow systems with differing levels of complexity.  

We first examine infiltration into a homogeneous soil profile, followed by a case study 

considering infiltration into a heterogeneous soil profile comprised of different horizontal layers.  

Two approaches to modeling these different flow systems are considered: (1) analytical models 

of water and electrical flow in homogeneous soils; and, (2) numerical models capable of 

accurately representing water and electrical flow in heterogeneous soils.  These coupled 

hydrologic and geophysical models are hereafter referred to as the analytical and numerical 

models, respectively.  The analytical models provide a somewhat crude approximation of the 

actual flow processes occurring in a heterogeneous material, yet have the advantage of being 

computationally efficient. This of course is a significant benefit, and we therefore explore 
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whether the use of models that fail to consider the detail of the hydrologic system (e.g. 

heterogeneity) can provide accurate results using coupled hydrogeophysical inversion.  

 

Solution of the forward problem using a numerical model 

The coupled hydrogeophysical inverse problem requires three different forward models: a 

hydrologic model, a geophysical model (electrical conductivity for a given electrode array), and 

a petrophysical relation. The hydrologic model enables the simulation of water content with 

depth and time based on a numerical solution of Richards’ equation.  The geophysical model 

simulates electrical conductivities that would be measured for each electrode array.  This is 

achieved through a numerical solution for electrical flow with the electrical conductivity 

distribution (which depend on the water content profile calculated with the hydrologic model) at 

given measurement time.  To form realistic electrical conductivity measurements in the case 

studies considered herein, we added synthetic measurement error to the error-free electrical 

conductivities simulated with the geophysical model. The procedure for solving the 

hydrogeophysical problem with a highly accurate numerical solution is described in this section. 

In a subsequent section, a simplified, and hence computationally superior hydrogeophysical 

approach is given using an analytical model. 

 

Hydrologic model  

The hydrologic problem that we consider is infiltration and drainage in a vertically 

heterogeneous soil profile.  One dimensional water flow is described by Richards’ equation 
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In Eq. (1), ψ [L] is the pressure head, θ [-] is the volumetric water content, K(ψ) [LT-1] is the 

hydraulic conductivity (which is a function of the pressure head), z [L] is the vertical space 

coordinate (positive upwards) and t [T] is time.  Eq. (1) is solved numerically using a Picard 

iteration scheme subject to the following boundary and initial conditions. 
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where zmin is the depth in the soil profile (zmin = 15m) and ψn is the initial pressure head (ψn = -

3.05m, a value proposed for field capacity in Hillel [1998]).  The hydraulic conductivity is 

defined using the van Genuchten – Mualem model [Mualem, 1976; van Genuchten, 1980] 
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In Eqs. (3a) and (3b), Θ(ψ) [-] is the water saturation, Ks [LT-1] denotes the saturated hydraulic 

conductivity, α [L-1] and n [-] are soil-specific parameters that control the shape of the soil 

moisture retention function, Θ(ψ), and θr [-] and θs [-] are the residual and saturated volumetric 

water contents, respectively. 
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The hydrologic simulations are completed using HYDRUS 1D [Simunek et al., 1999].  The 

model domain is 15 m deep and is composted of 1001 nodes.  Heterogeneity is simulated by a 

random distribution of saturated hydraulic conductivity (Figure 2-A) generated with a mean 

logKs of -0.5 [m hr-1], variance of 1 and associated correlation length of 0.1 m.  The water 

retention curve parameters (van Genuchten α and n) and the residual and saturated water content 

(θr and θs) are assumed uniform throughout the soil profile.  Parameter values correspond to a 

loam soil (α = 3.6 m−1, n = 1.56, θr = 0.078 and, θs = 0.43) [Carsel and Parrish, 1988].  At the 

uniform initial pressure head of 3.05 the initial water content, θi, is 0.17 cm3/cm3 and uniform 

throughout the soil profile. 

 

The water content profile during 5 days of infiltration and 15 days of redistribution are presented 

in Figure 2-B.  Black lines show the water content profile at select times during infiltration (t = 

{0, 6, 24, 48, 96, 120} hours) and grey lines show the water content profile at select times during 

redistribution (t = {144, 192, 240, 336, 480} hours).  The depth to the wetting front as a function 

of time is presented in Figure 3 (diamonds with dashed line). 

 

Electrical conductivity model  

We numerically simulate three-dimensional electrical current flow between a dipole in a 

heterogeneous half space. Taking advantage of symmetry and the principle of superposition, we 

solve Poisson’s equation for the distribution of electrical potential (V) in cylindrical coordinates 

(where r is the radial direction and z represents the vertical direction) with a vertical variation in 

the electrical conductivity (σ,  [Sm-1]) associated with the changing water content with depth at 

an observation time. 
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We use the following boundary conditions 
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In Eqs. (4) and (5) q denotes the source (current electrode) with a corresponding strength of Ic. 

 

The numerical electrical flow model was constructed using Comsol Multiphysics (Comsol, Inc, 

Los Angeles).  The 2D axisymmetric model solves a domain of 150 m by 150 m and is 

composed of 107529 elements.  The size of the model domain and density of finite elements was 

dictated by minimizing the influence of the boundary conditions on the simulated voltage in the 

vicinity of the current electrode (~ 30 m radius from the electrode). 

 

Petrophysical relation 

The hydrologic and electrical conductivity models are linked by the dependence of the soil 

electrical conductivity on the soil water content. A simple power-law relation is used to relate 

volumetric soil water content and electrical conductivity[Archie, 1942], . 

( ) ( )btzatz ,, θσ =          (6) 

where a [Sm-1] and b [-] are empirical shape factors that need to be determined through 

calibration 

 

In solving the coupled hydrogeophysical inversion, the electrical conductivity model needs to be 

computed for every observation time using the corresponding water content profile (and 

petrophysical relation). Unfortunately, even for the relatively simple conditions considered 
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herein, running times are significant. For instance, a single forward simulation using the coupled 

numerical models described above is on the order of ten minutes on a desk top computer (dual 

core 2.66GHz processor with 4GB memory). This poses problems for Monte Carlo based 

sampling methods that generally require many thousands of forward runs to find good parameter 

solutions.  Therefore, we examine whether the approach can be used successfully with a 

computationally more efficient approximate solution for the hydrologic model. Another 

possibility is to use high performance computing with multiple computers running in parallel 

[Huisman et al., 2009]. Yet, such approach limits widespread application and use of the 

hydrogeophysical inversion framework proposed herein.  

 

Solution of the forward problem using the analytical model 

To develop a simplified model of unsaturated flow amenable to Monte Carlo analysis we follow 

the three phases of a hydrologic analysis that we described earlier, i.e., (i) hypothesis of a 

conceptual model capturing relevant processes, (ii) development of a mathematical model, and 

(iii) testing of the model against observed data.  First, we hypothesize that the change in mean 

moisture content across the wetting front is more significant for affecting the advance of the 

front than the local fluctuations caused by layered heterogeneity. Specifically, we consider an 

analytical solution that quantifies the depth of a step wetting front as a function of time. Finally, 

we test whether the simplified model can be calibrated to reproduce the depth of the wetting 

front over time obtained from the numerical simulations for the heterogeneous medium. 

 

Infiltration is represented by the Philip [1957] two-term infiltration model and redistribution by a 

rectangular drainage model [e.g. Jury and Horton, 2004].  The Philip model approximates an 
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advancing wetting front in homogeneous soil as piston flow with a constant volumetric water 

content, θwf [L3/L3], above the wetting front, and a uniform initial volumetric water content, θi 

[L3/L3].  The depth of the wetting front, zwf(t) [L], as a function of the cumulative infiltration, I(t) 

[L] at time t is: 

 ( ) ( )
iwf
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tItz

θθ −
=          (7) 

The cumulative infiltration is defined as: 

 ( ) tKSttI s+= 2
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          (8) 

where the sorptivity, S [L/T1.5], describes the capillarity of the soil. 

 

The rectangular drainage model simulates the advance of a wetting front during drainage as a 

function of elapsed time after infiltration ceases (t > td) assuming a uniform water content with 

depth above the wetting front, θwf(t), and a constant length of water (L) in the soil profile.
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The model further assumes that the instantaneous drainage rate at the wetting front is equal to the 

gravity flux, K(θwf).  We assumed a power law relation between hydraulic conductivity and 

saturation [after Jury and Horton, 2004] and allow for nonzero initial water content: 
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where N [-] is the power law exponent.  The water content of the draining layer as a function of 

time is: 

 ( ) ( ) ( ) ( )
( ) di

N

N
is

d
N

is
s

wf tttt
L

NKt >+⎥
⎦

⎤
⎢
⎣

⎡

−
+−−=

−

+− θ
θθ

θθθ

1

1 1    (11) 

 - 17 - 



θwf(t) is used to compute zwf with (9).  Using these models, the infiltration and drainage processes 

are described by five different parameters (Ks, S, N, θs, and θi).  These are the parameters we 

consider in the coupled and uncoupled hydrogeophysical inversion example. 

 

The utility of this analytical model for representing the movement of the wetting front during 

flow in a heterogeneous system was tested by calibrating the model to the observed wetting front 

depths simulated by the numerical model (Figure 3, diamonds with dashed line).  We used the 

DREAM [Vrugt et al., 2008, 2009a] parameter estimation algorithm to select values of Ks, S, and 

N (Table 1) by minimizing the sum of squared residuals between the depth to the wetting front 

predicted by the analytical model versus those obtained from the numerical model, which 

explicitly includes heterogeneity.  (Further details of the use of DREAM are provided in the 

methods section.)  The initial and saturated water content were set equal to those used in the 

heterogeneous numerical model (Table 1) to provide consistent change in water content across 

the wetting front.  As illustrated in Figure 3, the analytical model (solid line, no symbols) was 

able to replicate the depth of the wetting front observed in the heterogeneous soil very well.  

(The dashed lines are the 95% confidence interval for the prediction based on the simplified 

homogeneous model.)  However, as is widely recognized, good calibration statistics do not 

guarantee that the model is a faithful representation of the system.  For example, the calibrated 

analytical model may not make accurate predictions under different initial or boundary 

conditions.  Furthermore, even for the conditions for which calibration was performed the 

analytical model was not able to replicate the water content behind the wetting front (compare 

Figure 2-B and 2-C).  Of particular importance for electrical conductivity interpretation, the 

analytical model misrepresents the water content near the ground surface during drainage. 

 - 18 - 



 

The sharp wetting front and uniform water content above and below the wetting front simulated 

by the analytical water flow model results in a two-layer electrical conductivity distribution 

within the soil profile throughout infiltration and redistribution.  The upper layer has an electrical 

conductivity associated with the water content above the wetting front, σwf, and extends from the 

ground surface to zwf.  The lower layer has an electrical conductivity associated with the initial 

water content, σi, and extends to infinite depth.  This electrical conductivity structure allows the 

use of an analytical solution for the apparent conductivity measured with surface electrical 

conductivity over a horizontal layer [Telford et al., 1990]: 
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where a is the electrode spacing, z is the layer depth (equivalent to zwf in this study), and 

iwf

iwfh
σσ
σσ

+

−
= .  The first fifty terms of the summation in (12) are evaluated.  Using this analytical 

solution and the computationally less demanding analytical hydrologic model, the run time for 

the coupled analytical models was reduced to approximately two seconds on a desktop computer 

(dual core 2.66GHz processor with 4GB memory), a time reduction of 1:3000 compared to the 

numerical model.  It can be argued that similar computational conveniences often influence the 

selection of models for hydrologic interpretations. 

 

Generating Synthetic ERT data 

The synthetic experiment consisted of monitoring five days of infiltration followed by 15 days of 

redistribution.  The true hydrologic and petrophysical model parameter values for each model are 
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listed in Table 1.  Synthetic data were simulated for 10 Wenner arrays (electrode spacings of 0.5, 

1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12, and 15 m).  To generate the synthetic data sets, we calculated 

the water content profile at each measurement time (t = {2, 6, 12, 24, 36, 48, 72, 96, 120, 132, 

144, 168, 192, 216, 240, 288, 336, 384, 480} hours) using the hydrologic models with the correct 

soil hydraulic parameters.  We then converted the local water content values to electrical 

conductivities using the petrophysical relation and used these electrical conductivity profiles to 

calculate the apparent electrical conductivity values that would be measured with each electrode 

array at each measurement time.  Finally, we added the same realization of uncorrelated, 

normally distributed, random noise with a mean of zero and a standard deviation of 2 mS/m to 

each set of error-free apparent electrical conductivity values to mimic moderately noisy field 

data.  Other options exist for corrupting the synthetic data, such as adding errors to the measured 

voltage; this topic will be considered in more detail in future investigations,  

 

One advantage of a synthetic experiment is that we can also produce ERT data that would have 

been measured if the simplified hydrologic model had been a true representation of the system.  

By using these data for inversion and comparing the results with inversions based on the “true” 

data described above, we can define the contributions of measurement error and model structural 

error to the inverse processes.  Figure 4 shows the synthetic data sets with and without 

measurement errors for three of the ERT arrays (electrode spacing of 0.5, 2, and 8 m).  The solid 

lines are the error free values and the symbols are the noisy synthetic data.  The gray lines and 

symbols are the apparent conductivity values derived from the numerical hydrologic and 

electrical conductivity model with explicit consideration of heterogeneity.  The black lines and 

symbols are simulated using the analytical hydrologic and electrical conductivity model. These 
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results suggest that even when the wetting front depths as a function of time match well with 

both the numerical and analytical models (Figure 2-B and 2-C) the corresponding electrical 

conductivity predictions can be significantly different due to the nonlinear sensitivity of 

electrical conductivity to changes in water content with depth.  This suggests that model 

structural error is likely to be significant for our synthetic experiment.  In practice, it would take 

considerable experience in hydrology and geophysics to predict the likely impacts of this model 

error on the hydrogeophysical inversion.  But, by conducting a simple synthetic study, such as 

that shown here, a hydrologist and a geophysicist working together to build a coupled analysis 

framework could identify this shortcoming and design experiments and analyses appropriately.  

 

Methods  

For each of the following examinations, we use synthetic electrical conductivity data to infer the 

hydrologic parameter values of the calibrated analytical hydrologic model.  We then use the 

predicted sets of parameter values to predict the wetting front depth through time.  Finally, we 

characterize the maximum likelihood, (ML), prediction and its 95% confidence intervals using 

the DREAM inferred joint posterior probability density function of the parameters. In every case, 

we used the same inverse tools and settings for the coupled and uncoupled approaches and we 

provided the same information to both procedures. 

 

Parameter estimation algorithm  

For all of our analyses, we use the recently developed DiffeRential Evolution Adaptive 

Metropolis (DREAM) algorithm to sample the posterior pdf (Vrugt et al., 2008, 2009a). This 

method runs multiple Markov chains simultaneously for global exploration of the parameter 
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space, and automatically tunes the scale and orientation of the proposal distribution en route to 

the posterior target pdf.  The various chains are initialized at different starting points within the 

multidimensional hypercube defined in Table 1 (feasible parameter ranges), and learn from each 

other through a process of recombination and crossover.  Standard convergence diagnostics of 

multiple chains are used to check whether the sampler has converged to the posterior distribution 

after 50,000 model evaluations.  The DREAM sampling scheme is an extension of the SCEM-

UA optimization algorithm (Vrugt et al. 2003), but has the advantage of maintaining detailed 

balance and ergodicity and therefore provides an exact estimate of the posterior pdf. 

 

Uncoupled hydraulic parameter estimation  

We used DREAM to drive each of the three steps of an uncoupled inversion.  In the first step, we 

used the DREAM algorithm to obtain sample realizations from the posterior distribution of the 

geophysical parameter estimates.  The posterior distribution p(x|σa) is the probability that the 

parameter set x could occur given that the apparent conductivity values σa have been observed, 

where x = […σwf(ti),σi(ti),z(ti) …] such that σwf(ti) and σi(ti) are the conductivities above and 

below the wetting front located at depth z at time ti and σa=[ σ1,1 σ1,2 … σi,j …σnt,ns] such that σi,j 

is the apparent conductivity measured at array number j at time ti.  The total numbers of 

electrode arrays and observation times are given by ns and nt, respectively.  Using Bayes’ 

theorem, this probability is a function of a prior pdf, p(x), for x and the likelihood p(σa |x), 

p(x|σa) = c p(σa |x) p(x), where c is a normalizing constant.  Because our geophysical model 

allows for simulation of σa(ti) from x(ti) at any time ti, i.e., ( ) (( ii tft xσa ))=ˆ ,  the likelihood 

describes the probability of misfit between simulated ( )aσ̂  and observed (  apparent 

conductivity values as a result of measurement or model errors.  We use a classical Gaussian 

)aσ
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likelihood distribution that measures the distance between observed ( )ji,σ̂  and simulated 

apparent conductivity values, ( )ji,σ . 
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Here, η2
i,j is the variance of the measurement error used to corrupt the synthetic data (η is used to 

denote variance to avoid confusion since standard nomenclature for both electrical conductivity 

and variance is σ).  Note that p(x) is chosen as being a non-informative prior using a uniform 

hypercube.  It therefore cancels out of Eq. (13), and the posterior distribution is solely based on 

the misfit between measured and simulated apparent electrical conductivity values.  The 

geophysical parameter ranges are listed in Table 1.  

 

In the second step of the uncoupled approach, geophysical parameter estimates are converted to 

hydrologic property estimates.  The conductivity of the layers for each sample of x drawn from 

( σxp )  in the first step are converted to water content using a petrophysical relation such that the 

vectors θwf, θi, and zwf are the water content above and below the wetting front and the depth of 

the wetting front is zwf as functions of time. 

 

In the third step of the uncoupled inversion, we use the hydrologic observations derived from 

geophysical measurements to constrain the hydrologic model parameters m = [Ks, S, N, θs, θi].  

We again use DREAM to sample the posterior distribution of the model parameters, but the data 

constraint is now provided by the inferred hydrologic data, which are obtained by assembling the 

maximum likelihood (ML) estimates of θwf, θi and zwf into a single measurement vector y = [θwf, 
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θi, zwf] of length 3nsnt.  We define the measurement uncertainty for the elements of θwt, θi, and 

zwf, i.e., at each observation time, based on the standard deviation of the posterior pdfs estimated 

during the geophysical inversion step described above.  We collect these uncertainties within a 

single vector ν. We use the following classical density function 

( ) ( ) ( )23

22
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ˆ1 exp
22

s tn n
i i

i ii

y y
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     (14) 

where, ν2
i is the variance of each measurement error used to corrupt the synthetic data.  The 

DREAM algorithm is then used to draw samples of ( | )p m y  starting with uniform prior ranges 

for each of the parameters as listed in Table 1.  Note that Equation (14) is identical to (13) with 

ji,σ  replaced by yi and x replaced by m.  That is, we are treating the results of the geophysical 

inversion as if they were hydrologic observations.  Uncertainty for each of the inferred 

hydrologic observations (θwf, θi and zwf) was defined as the width of the posterior pdf carried 

over from the geophysical inversion for each measurement time.  This “measurement” 

uncertainty is a combination of the impacts of the electrical conductivity measurement error and 

the errors contributed by geophysical inversion.  In contrast, if one of these properties were 

measured directly, (e.g. θwf with the gravimetric method), we could assign a measurement 

uncertainty based on the characteristics of the measurement method. 

 

Coupled hydraulic parameter estimation  

For the coupled approach, we did not determine the electrical conductivity structure at each 

observation time. Rather, we estimated the hydraulic model parameters m = [Ks, S, N, θs, θi] 

directly from the apparent conductivity data ( )aσ . We used the same density function as 

previously defined in Equation (13) after replacing x with m, and DREAM was used to draw 
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samples from the posterior pdf.  Although not shown in this example, the coupled approach 

allows for simple inclusion of multiple measurement types because the misfit of each 

measurement can be weighted in the objective function based on the measurement uncertainty of 

that method.  In other words, the objective function is defined in the measurement units and 

normalized by the measurement uncertainty for each measurement type. 

 

Results  

Our numerical experiments were aimed at assessing the performance of coupled and uncoupled 

inversion for increasingly complicated model calibration scenarios.  First, we compare the results 

of the two inversion strategies when measurement error is introduced, but no model structural 

error exists.  Then, we evaluate the impact of model structural errors by calibrating a model for a 

homogeneous soil using data generated by a spatially heterogeneous medium.  

 

Measurement error only, no model structural inadequacies  

First, we conduct a hydrogeophysical inversion to assess the impacts of measurement error on 

the model calibration results.  To do this, we use synthetic observations collected during 

infiltration that are based on the analytical hydrologic model with added measurement error. In 

this manner, the coupled and uncoupled inverse approaches use exactly the same hydrologic 

model and the underlying physical model correctly represents the hydrologic system under 

consideration. For these conditions, the uncoupled approach was able to simultaneously 

constrain the parameters Ks, S, θi, and θs with moderate uncertainty (Table 2). Yet, these 

parameter uncertainties propagate to large prediction errors (solid lines) and uncertainties 

(dashed lines) when compared to the true wetting front depth as a function of time (symbols) 
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(Figure 5-A). In contrast, the coupled approach recovers all of the parameters with very little 

uncertainty (Table 2). This results in predicted depths of the wetting front through time with 

relatively low error and low uncertainty (Figure 5-B). 

 

Measurement error and model structural inadequacies  

The uncoupled and coupled analyses were repeated using synthetic data generated for the 

heterogeneous soil with the numerical hydrologic and geophysical models and added 

measurement error. In this case, however, the analytical models for a homogenous soil were used 

to interpret the results for both the coupled and uncoupled inversion schemes. Under these 

conditions, neither the coupled nor the uncoupled approach was able to produce predictions with 

low error and uncertainty (Figure 5-C and 5-D). In particular, both inversion approaches show 

large errors and/or uncertainties during redistribution.  These errors arise due to the low water 

content region near the ground surface (Figure 2B) that is not captured in the analytical 

hydrologic model predictions (Figure 2C). This low water content, and therefore low electrical 

conductivity, region is located in a zone of high sensitivity of the electrical conductivity method 

[e.g. Furman et al., 2003].  As a result, the analytical model has to reduce the water content 

behind the wetting front substantially to match the low apparent electrical conductivity that is 

caused by this shallow low water content region (Table 3). 

 

Discussion and conclusions 

We have presented a simple comparison of coupled and uncoupled hydrogeophysical inversion.  

The underlying premise of the coupled approach is that the interpretation of the geophysical 

measurements will be improved by using the hydrologic model to provide a context for 
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interpretation.  This advantage is demonstrated clearly by the improved accuracy and reduced 

uncertainty of the predictions of depth of the wetting front through time based on electrical 

conductivity measurements with measurement error when the hydrologic model was a good 

representation of the underlying physical system. 

 

There is, however, one caveat: regardless of the inverse approach used, if the hydrologic model 

does not represent the system adequately, then the interpretation will inherently be flawed.  For 

the uncoupled approach, this hydrologic model error does not affect the geophysical 

interpretation.  But, the hydrologic model error leads to errors when the geophysical results are 

used for calibration.  For the coupled approach, the hydrologic model error provides a misleading 

context for interpreting the geophysical measurements.  In general, it is likely that the value of 

coupled approach varies with the degree of hydrologic model conceptual error, although this has 

not been examined completely here.  In some cases, such as shown here, the shortcomings of the 

hydrologic model may not impact the ability to make the hydrologic predictions of interest; but, 

they may impact the interpretation of the geophysical data using either the coupled or uncoupled 

approach.  For example, in our case, the simplified hydrologic model could reproduce the 

prediction of interest well (the wetting front depth through time).  But, the simplified model 

produced incorrect water content profiles at each time, which has a profound effect on the 

predicted electrical conductivity.  In the end, our findings suggest that using a coupled 

hydrogeophysical inversion approach can greatly improve the value of geophysical 

measurements given an appropriate hydrologic model.  But, the coupled approach cannot 

overcome fundamental limitations due to poor data, paucity of data, or model structural error.  
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In addition to the direct advantages of coupled inversion for improved parameter estimation, we 

contend that the coupled approach has an additional, subtle advantage if a study involves a 

collaborative effort between a hydrologist and a geophysicist.  Namely, because the coupled 

approach requires that the hydrologic and geophysical models be merged, it forces the 

hydrologist and the geophysicist to formulate a consistent framework for inference and solution. 

This is likely to support more complete sharing of supporting data and more extensive 

communication regarding the value of geophysical and other data as part of an integrating 

hydrogeophysical investigation. Yet, this may also be the primary limit to the routine 

implementation of coupled inversion. The formulation of common solution grids, time steps, and 

simulation accuracies requires an uncommon level of collaboration during scientific analysis. 

 

To us, the important general finding of this study is that there is a need for hydrologic insight and 

understanding when completing a hydrogeophysical study: no amount of additional geophysical 

data or improvements in joint or coupled inversion will overcome the limitations of a poor 

hydrologic conceptualization.  On the other hand, this may also point to a role for uncoupled 

hydrogeophysical analysis: specifically, in many cases it may be worthwhile to conduct an 

independent geophysical survey as an initial step toward constructing a hydrologic conceptual 

model.  This independent interpretation of the geophysical data may point out unexpected 

subsurface features that could alert a hydrologist to limitations in their conceptualization of the 

hydrologic processes.  

 

 

 - 28 - 



Acknowledgements 

We would like to thank Kamini Singha and the anonymous reviewers for their thorough reviews 

and helpful suggestions for improving the manuscript.  During this project, Andrew Hinnell and 

Ty Ferré were supported by the National Research Initiative of the USDA Cooperative State 

Research, Education and Extension Service, grant number 2003-35102-13674. Jasper Vrugt was 

supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory 

postdoctoral program. J.A. Huisman is supported by grant HU1312/2-1 of the Deutsche 

Forschungsgemeinschaft (DFG).  Michael Kowalsky was supported by the U.S. Department of 

Energy, Contract No. DE-AC02-05CH11231. 

 

 - 29 - 



References 

Archie, G.E. (1942), The electrical resistivity log as an aid in determining some reservoir 

characteristics, Transactions of the American Institute of Mining and Metallurgical 

Engineers, 146, 54-61. 

Binley, A., P. Winship, R. Middleton, M. Pokar and J. West (2001), High-resolution 

characterization of vadose zone dynamics using cross-borehole radar, Water Resources 

Research, 37(11), 2639-2652. 

Binley, A., L.D. Slater, M. Fukes, and G. Cassiani (2005), Relationship between spectral induced 

polarization and hydraulic properties of saturated and unsaturated sandstone, Water 

Resources Research, 41, W12417, doi:10.1029/2005WR004202. 

Carsel, R.F., and R.S. Parrish (1988), Developing joint probability distributions of soil water 

retention characteristics, Water Resources Research, 24, 755–769. 

Cassiani, G., G. Böhm, A. Vesnaver, and R. Nicolich (1998), A geostatistical framework for 

incorporating seismic tomography auxiliary data into hydraulic conductivity estimation, 

Journal of Hydrology, 206, 58-74. 

Cassiani, G., V. Bruno, A. Villa, N. Fusi, and A. Binley (2006), A saline trace test monitored via 

time-lapse surface electrical resistivity tomography, Journal of Applied Geophysics, 59, 

244-256, doi:10.1016/j.jappgeo.2005.10.007 

Cassiani, G., C. Strobbia, and L. Gallotti (2004), Vertical radar profiles for characterization of 

deep vadose zones, Vadose Zone Journal, 3(4), 1093-1105. 

Chambers, J.E., O. Kuras, P.I. Meldrum, R.O. Ogilvy, and J. Hollands (2006), Electrical 

resistivity tomography applied to geologic, hydrogeologic and engineering investigations 

at a former waste-disposal site, Geophysics, 71(6), doi:10.1190/1.2360184 

 - 30 - 



Chen, J., S. Hubbard, J. Peterson, K. Williams, M. Fienen, P. Jardine, and D. Watson (2006), 

Development of a joint hydrogeophysical inversion approach and application to a 

contaminated fractured aquifer, Water Resources Research, 42, W06425, 

doi:10.1029/2005WR004694. 

Chen, J.S., S. Hubbard, Y. Rubin, C. Murray, E. Roden, and E. Majer (2004), Geochemical 

characterization using geophysical data and Markov Chain Monte Carlo methods: A case 

study at the South Oyster bacterial transport site in Virginia, Water Resources Research, 

40, W12412, doi:10.1029/2003WR002883. 

Daily, W., A. Ramirez, D. LaBrecque and J. Nitao (1992), Electrical-resistivity tomography of 

vadose water movement, Water Resources Research, 28(5), 1429-1442. 

Day-Lewis, F.D., J.M. Harris, and S.M. Gorelick (2002), Time-lapse inversion of crosswell radar 

data, Geophysics, 67(6), 1730-1752, doi:10.1190/1.1527075. 

Day-Lewis, F.D., J.W. Lane, Jr., J.M. Harris, and S.M. Gorelick (2003), Time-lapse imaging of 

saline-tracer transport in fractured rock using difference-attenuation radar tomography, 

Water Resources Research, 39(10), 1290, doi:10.1029/2002WR001722. 

Day-Lewis, F.D., K. Singha, and A. Binley (2005), The application of petrophysical models to 

radar and electrical resistivity tomograms: resolution dependent limitations, Journal of 

Geophysics Research, 110, B08206, doi:10.1029/2004JB003569. 

Deiana, R., G. Cassiani, A. Villa, A. Bagliani, and V. Bruno (2008), Calibration of a vadose zone 

model using water injection monitored by GPR and electrical resistance tomography, 

Vadose Zone Journal, 7, 215-226, doi:10.2136/vzj2006.0137. 

 - 31 - 



Ferré, T.P.A.,  L. Bentley, A. Binley, N. Linde, A. Kemna, K. Singha, K. Holliger, J.A. 

Huisman, and B. Minsley (2009), Critical steps for the continuing advancement of 

hydrogeophysics, EOS Trans. AGU, 90(23), 200. 

Ferré, P.A., D.L. Rudolph, and R.G. Kachanoski (1996), Spatial averaging of water content by 

time domain reflectometry: Implications for twin rod probes with and without dielectric 

coatings, Water Resources Research, 32(2), 271-279. 

Finsterle, S.A., and M.B. Kowalsky (2008), Joint hydrological-geophysical inversion for soil 

structure identification, Vadose Zone Journal, 7, 287–293, doi:10.2136/vzj2006.0078. 

French, H., and A. Binley (2004), Snow melt infiltration: monitoring temporal and spatial 

variability using time-lapse electrical resistivity, Journal of Hydrology, 297(1-4), 174-

186, doi:10.1016/j.jhydrol.2004.04.005. 

Furman, A., T.P.A. Ferré and A.W. Warrick (2003), A sensitivity analysis of electrical resistivity 

tomography array types using analytical element modeling, Vadose Zone Journal, 2(3), 

416-423. 

Gallardo, L.A. and M.A. Meju (2003), Characterization of heterogeneous near- surface materials 

by joint 2D inversion of dc resistivity and seismic data. Geophysics Research Letters, 

30(13), 1658, doi:10.1029/2003GL017370. 

Gallardo, L.A. and M.A. Meju (2004), Joint two-dimensional DC resistivity and seismic travel 

time inversion with cross-gradients constraints. Journal of Geophysical Research, 109, 

B03311, doi:10.1029/2003JB002716. 

Halihan, T., S. Paxton, I. Graham, T. Fenstemaker, and M. Riley (2005), Post-remediation 

evaluation of a LNAPL site using electrical resistivity imaging, Journal of Environmental 

Monitoring, 7(4), 283-287, doi:10.1039/b416484a 

 - 32 - 



Hillel, D. (1998), Environmental Soil Physics, Academic Press, San Diego, CA. 

Hubbard, S.S., Y. Rubin, and E. Majer (1999), Spatial correlation structure estimation using 

geophysical and hydrogeological data, Water Resources Research, 35(6), 1809-1825. 

Hubbard, S. S., and Y. Rubin (2000), Hydrogeological parameter estimation using geophysical 

data: a review of selected techniques, Journal of Contaminant Hydrology, 45(1-2), 3-34. 

Huisman, J.A., J. Rings, J.A. Vrugt, J. Sorg, and H. Vereecken (2009), Hydraulic properties of a 

model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion, 

Journal of Hydrology, (in review). 

Hyndman, D.W., J.M. Harris, and S.M. Gorelick (1994), Coupled seismic and tracer test 

inversion for aquifer property characterization, Water Resources Research, 30(7), 1965-

1977. 

Hyndman, D. W., and S. M. Gorelick (1996), Estimating lithologic and transport properties in 

three dimensions using seismic and tracer data: the Kesterson aquifer, Water Resources 

Research, 32(9), 2659-2670. 

Jury, W. A. and R. Horton, Soil Physics: Sixth Edition, Wiley, New York, 2004. 

Kemna, A., J. Vanderborght, B. Kulessa and H. Vereecken (2002), Imaging and characterization 

of subsurface solute transport using electrical resistivity tomography (ERT) and 

equivalent transport models, Journal of Hydrology, 267(3-4), 125-146. 

Kim, K., M. P. Anderson, and C. J. Bowser (1999), Model calibration with multiple targets: A 

case study, Ground Water, 37(3), 345-351. 

Klenke, J. M., and A. L. Flint (1991), Collimated neutron probe for soil-water content 

measurements, Soil Science of America Journal, 55(4), 916-923. 

 - 33 - 



Kowalsky, M.B., J. Birkholzer, J. Peterson, S. Finsterle, S. Mukhopadhyay, and Y. Tsang, 

(2009), Sensitivity analysis for joint inversion of GPR and thermal-hydrological data 

from a large-scale underground heater test,  Nuclear Technology, 164(2), 169-179. 

Kowalsky, M.B., S. Finsterle, J. Peterson, S. Hubbard, Y. Rubin, E. Majer, A. Ward and G. Gee 

(2005), Estimation of field-scale soil hydraulic and dielectric parameters through joint 

inversion of GPR and hydrological data, Water Resources Research, 41(11), W11425, 

doi:10.1029/2005WR004237. 

Kowalsky, M.B., S. Finsterle, and Y. Rubin (2004), Estimating flow parameter distributions 

using ground-penetrating radar and hydrological measurements during transient flow in 

the vadose zone, Adv. in Water Res., 27(6), 583-599. 

Lambot, S., M. Antoine, I. vandenBosch, E.C. Slob, and M. Vanclooster (2004), Electromagnetic 

inversion of GPR signals and subsequent hydrodynamic inversion, Vadose Zone Journal, 

3, 1072–1081. 

Lehikoinen, A., S. Finsterle, A. Voutilainen, M.B. Kowalsky, and J.P. Kaipio (2009), Dynamical 

inversion of geophysical ERT data: state estimation in the vadose zone, Inverse Problems 

in Science and Engineering, 1, 1–22. 

Linde, N., A. Binley, A. Tryggvason, L. B. Pedersen, and A. Revil (2006a), Improved 

hydrogeophysical characterization using joint inversion of crosshole electrical resistance 

and ground penetrating radar traveltime data, Water Resources Research, 42, W12404, 

doi:10.1029/2006WR005131. 

Linde, N., S. Finsterle, and S. Hubbard (2006b), Inversion of tracer test data using tomographic 

constraints, Water Resources Research, 42, W04410, doi:10.10292004WR003806. 

 - 34 - 



Looms, M.C., A. Binley, K.H. Jensen, L. Nielsen, and T.M. Hansen (2008a), Identifying 

unsaturated hydraulic parameters using an integrated data fusion approach on cross-

borehole geophysical data, Vadose Zone Journal, 7, 238-248, doi:10.2136/vzj2007.0087. 

Looms, M.C., K.H. Jensen, A. Binley, and L. Nielsen (2008b), Monitoring unsaturated flow and 

transport using cross-borehole geophysical methods, Vadose Zone Journal, 7, 227-237, 

doi:10.2136/vzj2006.0129. 

Menke, W. (1984), Geophysical Data Analysis: Discrete Inverse Theory, Elsevier, New York. 

Moysey, S., K, Singha, and R. Knight (2005), A framework for inferring field-scale rack physics 

relationships through numerical simulation, Geophysical Research Letters, 32, L08304, 

doi:10.1029/2004GL022152. 

Moysey, S., R.J. Knight, and K. Singha (2006) Relating geophysical and hydrologic properties 

using field-scale rock physics, in P.J. Binning et al. (ed.) Proc. 16th Int. Conf. on 

Computational Methods in Water Resources, Denmark, 19-22 June.  Available at 

proceedings.cmwr-xvi.org, Tech. Univ. of Denmark, Lyngby. 

Mualem, Y. (1976), New Model for Predicting Hydraulic Conductivity of Unsaturated Porous-

Media, Water Resources Research, 12(3), 513-522. 

Mugunthan, P., C.A. Shoemaker (2006), Assessing the impacts of parameter uncertainty for 

computationally expensive groundwater models, Water Resources Research, 42, 

W10428, doi:10.1029/2005WR004640. 

National Academy of Sciences, Board on Earth Sciences and Resources (2000), Seeing into the 

Earth: noninvasive characterization of the shallow subsurface for environmental and 

engineering applications, National Academy Press, Washington, D.C., 129 pp.  

 - 35 - 



Neuman, S. P. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, 

Stochastic Environmental Research and Risk Assessment, 17(5), 291-305, 

doi:10.1007/s00477-003-015107 

Neuman, S.P., P.J. Wierenga, and T.J. Nicholson (2003), A comprehensive strategy of 

hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites, Report 

NUREG/CR-6805, U.S. Nuclear Regulatory Commission, Washington, DC. 

Park, S. (1998), Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring 

data, Geophysics, 63(1), 41-51. 

Philip, J. R. (1957), The theory of infiltration: 4. Sorptivity and algebraic infiltration equations, 

Soil Science, 84(3), 257-264. 

Poeter, E.P., and M.C. Hill (1999), UCODE, a computer code for universal inverse modeling, 

Computers and Geosciences, 25(4), 457-462. 

Rucker, D.F., and T.P.A. Ferré (2004), Parameter estimation for soil hydraulic properties using 

zero-offset borehole radar: Analytical method, Soil Science Society of America Journal, 

68, 1560–1567, 2004. 

Sandberg, S.K., L.D. Slater and R. Versteeg (2002), An integrated geophysical investigation of 

the hydrogeology of an anisotropic unconfined aquifer, Journal of Hydrology, 267(3-4), 

227-243. 

Sicilia, G.T. and S.M. Moysey (2007), Comparison of hydrologic parameter estimates using 

sequential and integrated data fusion during a GPR monitored infiltration event, EOS 

Trans. AGU, 88(52), Fall Meet. Suppl., Abstract H23A-1016.  

Simunek, J., M. Sejna, and M. T. van Genuchten (1999), The HYDRUS-1D software package 

for simulating two-dimensional movement of water, heat, and multiple solutes in variably-

 - 36 - 



saturated media, version 2.0. IGWMC - TPS - 53, 251 pp., Int. Ground Water Modeling 

Cent., Colo. Sch. of Mines, Golden, Colo. 

Singha, K., and S. Moysey, (2006), Accounting for spatially variable resolution in electrical 

resistivity tomography through field-scale rock physics relations, Geophysics, 71(4), 

A25-A28, dio:10.1190/1.2209753. 

Slater, L. (2007), Near surface electrical characterization of hydraulic conductivity: From 

petrophysical properties to aquifer geometries - A review, Surveys in Geophysics, 28, 

169-197, doi:10.1007/s10712-007-9022-y 

Telford, W.M., L.P. Geldart and R.E. Sheriff (1990), Applied Geophysics: Second Edition, 

Cambridge University Press, Cambridge. 

Topp, G.C., J.L. Davis and A.P. Annan (1980), Electromagnetic Determination of Soil-Water 

Content - Measurements in Coaxial Transmission-Lines, Water Resources Research, 

16(3), 574-582. 

Troldborg, L., J.C. Refsgaard, K.H. Jensen, and P. Engesgaard (2007), The importance of 

alternative conceptual models for simulation of concentrations in a multi-aquifer system, 

Hydrogeology Journal, 15, 843-860, doi:10.1007/s10040-007-0192-y. 

Turesson, A. (2006), Water content and porosity estimated from ground-penetrating radar and 

resistivity, Journal of Applied Geophysics, 58, 99-111, 

doi:10.1016/j.jappgeo.2005.04.004. 

Vanderborght, J., A. Kemna, H. Hardelauf, and H. Vereecken (2005), Potential of electrical 

resistivity tomography to infer aquifer transport characteristics from tracer studies: a 

synthetic case study, Water Resources Research, 41, W06013, 

doi:10.1029/2004WR003774 

 - 37 - 



van Genuchten, M.T. (1980),  A Closed-Form Equation for Predicting the Hydraulic 

Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44(5), 892-

898. 

Vereecken, H., S. Hubbard, A. Binley, T. Ferré (2004), Hydrogeophysics: An introduction from 

the guest editors, Vadose Zone Journal, 3(4), 1060-1062. 

Vozoff, K., and D.L.B. Jupp (1975), Joint Inversion of Geophysical Data, Geophysical Journal 

of the Royal Astronomical Society, 43(3), 977-991. 

Vrugt, J.A., C.J.F. ter Braak, M.P. Clark, J.M. Hyman, and B.A. Robinson (2008), Treatment of 

input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain 

Monte Carlo simulation, Water Resources Research, 44, W00B09, 

doi:10.1029/2007WR006720. 

Vrugt, J.A., C.J.F. ter Braak, C.G.H. Diks, D. Higdon, B.A. Robinson, and J.M. Hyman (2009a), 

Accelerating Markov chain Monte Carlo simulation by differential evolution with self-

adaptive randomized subspace sampling, International Journal of Nonlinear Sciences 

and Numerical Simulation, 10(3), 273-290, 2009. 

Vrugt, J.A., H.V. Gupta, W. Bouten and S. Sorooshian (2003), A Shuffled Complex Evolution 

Metropolis algorithm for optimization and uncertainty assessment of hydrologic model 

parameters, Water Resources Research, 39(8), 1201, doi:10.1029/2002WR001642. 

Vrugt, J.A., and B.A. Robinson (2007), Treatment of uncertainty using ensemble methods: 

Comparison of sequential data assimilation and Bayesian model averaging, Water 

Resources Research, 43, W01411, doi:10.1029/2005WR004838. 

 - 38 - 



Vrugt, J.A., B.A. Robinson, and J.M. Hyman (2009b), Self-adaptive multimethod search for 

global optimization in real-parameter spaces, IEEE Transactions on Evolutionary 

Computation, 13(2), 243-259, doi:10.1109/TEVC.2008.924428. 

Ye, M., S.P. Neuman, and P.D. Meyer (2004), Maximum likelihood Bayesian averaging of 

spatial variability models in unsaturated fractured tuff, Water Resources Research, 40, 

W05113, doi:10.1029/2003WR002557.  

Yeh, T.-C.J., S. Liu, R.J. Glass, K. Baker, J.R. Brainard, D. Alumbaugh, D. LaBrecque (2002), A 

geostatistically based inverse model for electrical resistivity surveys and its applications 

to vadose zone hydrology, Water Resources Research, 38(12), 1278, 

doi:10.1029/2001WR001204. 

Yeh, T.-C.J., and J., Simunek (2002), Stochastic fusion of information for characterizing and 

monitoring the vadose zone, Vadose Zone Journal, 1, 207-221 

 

 - 39 - 



Figures 

Figure 1:  Analysis flowcharts for uncoupled (A) and coupled (B) integration of geophysical 

data in hydrologic analysis.  Grey boxes in the flowcharts show how additional data sources that 

could be included, but are not used in our example.  Note that each sequence of petrophysical 

relation, instrument response model, and geophysical data (simulated) in the coupled and 

uncoupled approaches represents a different measurement type.  

 

Figure 2: Comparison of two hydrologic models: (1) numerical model (solution to Richards 

equation for a heterogeneous soil profile); (2) analytical model (Philip infiltration and 

Jury/Horton rectangular drainage) for a homogeneous soil profile.  The parameters in the 

analytical model were estimated using DREAM to get a depth to wetting front behavior similar 

to the heterogeneous numerical model.  Panel A: Heterogeneous layered saturated hydraulic 

conductivity.  Panel B: Water content profile with depth for the numerical model at a subset of 

observation times.  Black lines are infiltration phase (t = 0, 6, 48, 120 h), and gray lines are 

redistribution phase (t = 144, 240, 480 h).  Panel C:  Water content profile with depth for the 

analytical model at a subset of observation times.  Black lines are infiltration phase (t = 0, 6, 48, 

120 h), and gray lines are redistribution phase (t = 144, 240, 480 h). 

 

Figure 3: Comparison of the depths of wetting front as a function of time. Depth to wetting front 

for the numerical (heterogeneous) model are the diamonds. Depth to wetting front for the 

analytical model is the solid line, and the associated 95% prediction limits of the analytical 

model are defined by the dashed lines. 
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Figure 4:  Subset of the synthetic apparent conductivity observations.  Electrode spacings shown 

are 0.5, 2, and 8m.  The solid lines from the numerical (heterogeneous) model and the dashed 

lines are from the analytical (homogeneous) model. 

 

Figure 5:  Predicted depth to wetting front for infiltration and redistribution.  Panel A. 

Corrupted synthetic data generated using the analytical model.  Uncoupled inversion completed 

with no model error (analytical model used in inversion).  Panel B: Corrupted synthetic data 

generated using the analytical model.  Coupled inversion completed with no model error 

(analytical model used in inversion).  Panel C: Corrupted synthetic data generated using 

numerical (heterogeneous) model.  Uncoupled inversion completed with the analytical model 

(model error).  Panel D: Corrupted synthetic data generated using numerical (heterogeneous) 

model.  Coupled inversion completed with the analytical model (model and measurement error).  
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Table 1.  Parameter values used to generate the error free synthetic data and their prior 
uncertainty ranges used in the DREAM inversion 

Parameter range Parameter Synthetic 
model value Minimum Maximum 

Ks [m hr-1] 0.010 0.001 0.1 
S [m hr-0.5] 0.075 0.01 1 
N [-] 3.57 1.1 10 
θi [-] 0.17 0.01 0.5 
θs [-] 0.43 0.01 0.5 
a [S m-1] 0.27 ---1 ---1 
b [-] 2.00 ---1 ---1 
σi [S m-1] ---2 0.0001 0.1 
σwf  [S m-1] ---2 0.0001 0.1 
zwf [m] ---2 0 100 

1 parameters not estimated. 
2 synthetic values computed from the hydrologic model output using the petrophysical relation 
 
 
Table 2.  Maximum likelihood (ML) estimates and 95% confidence intervals of the hydrologic 
parameter values using the uncoupled and coupled approaches. (Measurement error only – no 
model error). 

Uncoupled Analyses Coupled Analyses 
95% Confidence 95% Confidence Parameter 

Synthetic 
model 
value ML Lower Upper ML Lower Upper 

Ks [m hr-1] 0.010 0.010 0.0074 0.013 0.0097 0.0091 0.010 
S [m hr-0.5] 0.075 0.061 0.057 0.13 0.078 0.067 0.083 
N [-] 3.57 2.84 1.20 5.36 3.37 3.13 3.75 
θi [-] 0.17 0.18 0.13 0.20 0.17 0.17 0.18 
θs [-] 0.43 0.42 0.41 0.47 0.43 0.43 0.43 

 
 
Table 3.  Maximum likelihood (ML) estimates and 95% confidence intervals of the hydrologic 
parameter values using the uncoupled and coupled approaches. (Measurement and model error). 

Uncoupled Analyses Coupled Analyses 
95% Confidence 95% Confidence Parameter ML Lower Upper ML Lower Upper 

Ks [m hr-1] 0.0038 0.0030 0.0077 0.0072 0.0055 0.0082 
S [m hr-0.5] 0.055 0.042 0.093 0.15 0.085 0.15 
N [-] 1.69 1.11 2.73 1.48 1.11 1.95 
θi [-] 0.16 0.12 0.20 0.15 0.14 0.17 
θs [-] 0.35 0.32 0.43 0.38 0.38 0.39 
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