11 research outputs found

    Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures

    Get PDF
    The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie, grant agreement No. 676338, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement No. 866126 and the European Union’s Horizon 2020 research and innova tion Widespread: Twinning programme, grant agreement No. 810850. This publication has emanated from research supported in part by grants from Science Foundation Ireland (SFI) under Grant numbers 15/CDA/3629 and 19/FFP/6982 and Science Foundation Ireland (SFI) and European Regional Development Fund (ERDF) under grant number 13/RC/2073_2. E.M.F. acknowledges to the project TERM RES Hub – Infraestrutura Científica para a Engenharia de Tecidos e Medicina Regenerativa, Ref Num ber NORTE-01-0145-FEDER-02219015. The authors would like to acknowledge the significant contribution of Dr Oonagh Dwane in the writing and management of all grants. Open access funding provided by IReL

    Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy

    Get PDF
    The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min)

    Implementation of a quality improvement project on smoking cessation reduces smoking in a high risk trauma patient population

    Get PDF
    BACKGROUND: Cigarette smoking causes about one of every five deaths in the U.S. each year. In 2013 the prevalence of smoking in our institution’s trauma population was 26.7 %, well above the national adult average of 18.1 % according to the CDC website. As a quality improvement project we implemented a multimodality smoking cessation program in a high-risk trauma population. METHODS: All smokers with independent mental capacity admitted to our level I trauma center from 6/1/2014 until 3/31/2015 were counseled by a physician on the benefits of smoking cessation. Those who wished to quit smoking were given further counseling by a pulmonary rehabilitation nurse and offered nicotine replacement therapy (e.g. nicotine patch). A planned 30 day or later follow-up was performed to ascertain the primary endpoint of the total number of patients who quit smoking, with a secondary endpoint of reduction in the frequency of smoking, defined as at least a half pack per day reduction from their pre-intervention state. RESULTS: During the 9 month study period, 1066 trauma patients were admitted with 241 (22.6 %) identified as smokers. A total of 31 patients with a mean Injury Severity Score (ISS) of 14.2 (range 1–38), mean age of 47.6 (21–71) and mean years of smoking of 27.1 (2–55), wished to stop smoking. Seven of the 31 patients, (22.5 %, 95 % confidence interval [CI] of 10–41 %) achieved self-reported smoking cessation at or beyond 30 days post discharge. An additional eight patients (25.8 %, 95 % CI 12–45 %) reported significant reduction in smoking. CONCLUSIONS: Trauma patients represent a high risk smoking population. The implementation of a smoking cessation program led to a smoking cessation rate of 22.5 % and smoking reduction in 25.8 % of all identified smokers who participated in the program. This is a relatively simple, inexpensive intervention with potentially far reaching and beneficial long-term health implications. A larger, multi-center prospective study appears warranted. LEVEL OF EVIDENCE: Therapeutic Study, Level V evidence

    Der Einfluss von Glukose auf die Regeneration der Achillessehne im Rattenmodell

    No full text

    Der Einfluss von Glukose auf die Regeneration der Achillessehne im Rattenmodell

    No full text

    Ein neuer Aspekt der Stammzellnische: Die Blut-Sehnen-Schranke

    No full text

    European Cells and Materials / The blood-tendon barrier : identification and characterisation of a novel tissue barrier in tendon blood vessels

    No full text
    Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue) and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF)-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB). By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.(VLID)214717
    corecore