3,579 research outputs found
A flexible approach to parametric inference in nonlinear time series models
Many structural break and regime-switching models have been used with macroeconomic and …nancial data. In this paper, we develop an extremely flexible parametric model which can accommodate virtually any of these speci…cations and does so in a simple way which allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two simple concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in various ways, we can accommodate a wide variety of nonlinear time series models, including those with regime-switching and structural breaks. By allowing the state equation variances to depend on the distance between observations, the parameters can evolve in a wide variety of ways, allowing for everything from models exhibiting abrupt change (e.g. threshold autoregressive models or standard structural break models) to those which allow for a gradual evolution of parameters (e.g. smooth transition autoregressive models or time varying parameter models). We show how our model will (approximately) nest virtually every popular model in the regime-switching and structural break literatures. Bayesian econometric methods for inference in this model are developed. Because we stay within a state space framework, these methods are relatively straightforward, drawing on the existing literature. We use arti…cial data to show the advantages of our approach, before providing two empirical illustrations involving the modeling of real GDP growth
Core-Core Dynamics in Spin Vortex Pairs
We investigate magnetic nano-pillars, in which two thin ferromagnetic
nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be
set into stable spin vortex-pair configurations. The 16 ground states of the
vortex-pair system are characterized by parallel or antiparallel chirality and
parallel or antiparallel core-core alignment. We detect and differentiate these
individual vortex-pair states experimentally and analyze their dynamics
analytically and numerically. Of particular interest is the limit of strong
core-core coupling, which we find can dominate the spin dynamics in the system.
We observe that the 0.2 GHz gyrational resonance modes of the individual
vortices are replaced with 2-6 GHz range collective rotational and vibrational
core-core resonances in the configurations where the cores form a bound pair.
These results demonstrate new opportunities in producing and manipulating spin
states on the nanoscale and may prove useful for new types of ultra-dense
storage devices where the information is stored as multiple vortex-core
configurations
The Role of Bile in the Regulation of Exocrine Pancreatic Secretion
As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap
New Young Star Candidates in BRC 27 and BRC 34
We used archival Spitzer Space Telescope mid-infrared data to search for
young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed
clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These
regions both appear to be actively forming young stars, perhaps triggered by
the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of
the 26 YSOs or YSO candidates identified in the literature, and identify 16 new
YSO candidates that appear to have IR excesses. In BRC 34, the one
literature-identified YSO has an IR excess, and we suggest 13 new YSO
candidates in this region, including a new Class I object. Considering the
entire ensemble, both BRCs are likely of comparable ages, within the
uncertainties of small number statistics and without spectroscopy to confirm or
refute the YSO candidates. Similarly, no clear conclusions can yet be drawn
about any possible age gradients that may be present across the BRCs.Comment: 54 pages, 19 figures, accepted by A
Pareto versus lognormal: a maximum entropy test
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units
Design of beam optics for the Future Circular Collider e+e- -collider rings
A beam optics scheme has been designed for the Future Circular Collider-e+e-
(FCC-ee). The main characteristics of the design are: beam energy 45 to 175
GeV, 100 km circumference with two interaction points (IPs) per ring,
horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1]
with local chromaticity correction. The crab-waist scheme is implemented within
the local chromaticity correction system without additional sextupoles, by
reducing the strength of one of the two sextupoles for vertical chromatic
correction at each side of the IP. So-called "tapering" of the magnets is
applied, which scales all fields of the magnets according to the local beam
energy to compensate for the effect of synchrotron radiation (SR) loss along
the ring. An asymmetric layout near the interaction region reduces the critical
energy of SR photons on the incoming side of the IP to values below 100 keV,
while matching the geometry to the beam line of the FCC proton collider
(FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic
aperture (DA) has been obtained, including major dynamical effects, to assure
an adequate beam lifetime in the presence of beamstrahlung and top-up
injection. In particular, a momentum acceptance larger than +/-2% has been
obtained, which is better than the momentum acceptance of typical collider
rings by about a factor of 2. The effects of the detector solenoids including
their compensation elements are taken into account as well as synchrotron
radiation in all magnets. The optics presented in this paper is a step toward a
full conceptual design for the collider. A number of issues have been
identified for further study
- …
