110 research outputs found

    Imaging Pauli repulsion in scanning tunneling microscopy

    Get PDF
    A scanning tunneling microscope (STM) has been equipped with a nanoscale force sensor and signal transducer composed of a single D2 molecule that is confined in the STM junction. The uncalibrated sensor is used to obtain ultra-high geometric image resolution of a complex organic molecule adsorbed on a noble metal surface. By means of conductance-distance spectroscopy and corresponding density functional calculations the mechanism of the sensor/transducer is identified. It probes the short-range Pauli repulsion and converts this signal into variations of the junction conductance.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field

    Full text link
    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e. one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulas to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we motivate the choice of the Frenet-Serret trihedron which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and the Parker field. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard 3D model for the modulation of galactic protons. For this we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap

    Density-functional theory of inhomogeneous electron systems in thin quantum wires

    Full text link
    Motivated by current interest in strongly correlated quasi-one-dimensional (1D) Luttinger liquids subject to axial confinement, we present a novel density-functional study of few-electron systems confined by power-low external potentials inside a short portion of a thin quantum wire. The theory employs the 1D homogeneous Coulomb liquid as the reference system for a Kohn-Sham treatment and transfers the Luttinger ground-state correlations to the inhomogeneous electron system by means of a suitable local-density approximation (LDA) to the exchange-correlation energy functional. We show that such 1D-adapted LDA is appropriate for fluid-like states at weak coupling, but fails to account for the transition to a ``Wigner molecules'' regime of electron localization as observed in thin quantum wires at very strong coupling. A detailed analyzes is given for the two-electron problem under axial harmonic confinement.Comment: 8 pages, 7 figures, submitte

    Control of spin in quantum dots with non-Fermi liquid correlations

    Full text link
    Spin effects in the transport properties of a quantum dot with spin-charge separation are investigated. It is found that the non-linear transport spectra are dominated by spin dynamics. Strong spin polarization effects are observed in a magnetic field. They can be controlled by varying gate and bias voltages. Complete polarization is stable against interactions. When polarization is not complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure

    Shot noise of a quantum dot with non-Fermi liquid correlations

    Full text link
    The shot noise of a one-dimensional wire interrupted by two barriers shows interesting features related to the interplay between Coulomb blockade effects, Luttinger correlations and discrete excitations. At small bias the Fano factor reaches the lowest attainable value, 1/2, irrespective of the ratio of the two junction resistances. At larger voltages this asymmetry is power-law renormalized by the interaction strength. We discuss how the measurement of current and these features of the noise allow to extract the Luttinger liquid parameter.Comment: 4 pages, 3 figures,to be published in Phys. Rev. B. For high resolution image of Fig.1 see http://server1.fisica.unige.it/~braggio/doc.ht

    Magnetic clouds in the solar wind: A numerical assessment study of analytical models

    Get PDF
    Magnetic clouds (MCs) are "magnetized plasma clouds" moving in the solar wind. MCs transport magnetic flux and helicity away from the Sun. These structures are not stationary but feature temporal evolution as they propagate in the solar wind. Simplified analytical models are frequently used for the description of MCs, and fit certain observational data well. The goal of the present study is to investigate numerically the validity of an analytical model which is widely used for the description of MCs, and to determine under which conditions this model's implied assumptions cease to be valid. A numerical approach is applied. Analytical solutions that have been derived in previous studies are implemented in a \textbf{3-D magnetohydrodynamic} simulation code as initial conditions. Initially, the analytical model represents the main observational features of the MCs. However, these characteristics prevail only if the structure moves with a velocity close to the velocity of the background flow. In this case an MC's evolution can quite accurately be described using an analytic, self-similar approach. The dynamics of the magnetic structures which move with a velocity significantly above or below that of the velocity of the solar wind is investigated in detail. Besides the standard case in which MCs only expand and propagate in the solar wind, the case of an MC rotating around its axis of symmetry is also considered, and the resulting influence on the MC's dynamics is studied

    Transport of interacting electrons through a double barrier in quantum wires

    Full text link
    We generalize the fermionic renormalization group method to describe analytically transport through a double barrier structure in a one-dimensional system. Focusing on the case of weakly interacting electrons, we investigate thoroughly the dependence of the conductance on the strength and the shape of the double barrier for arbitrary temperature T. Our approach allows us to systematically analyze the contributions to renormalized scattering amplitudes from different characteristic scales absent in the case of a single impurity, without restricting the consideration to the model of a single resonant level. Both a sequential resonant tunneling for high T and a resonant transmission for T smaller than the resonance width are studied within the unified treatment of transport through strong barriers. For weak barriers, we show that two different regimes are possible. Moderately weak impurities may get strong due to a renormalization by interacting electrons, so that transport is described in terms of theory for initially strong barriers. The renormalization of very weak impurities does not yield any peak in the transmission probability; however, remarkably, the interaction gives rise to a sharp peak in the conductance, provided asymmetry is not too high.Comment: 18 pages, 8 figures; figures added, references updated, extended discussio

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period

    Get PDF
    • …
    corecore