228 research outputs found

    Cluster virial expansion for nuclear matter within a quasiparticle statistical approach

    Full text link
    Correlations in interacting many-particle systems can lead to the formation of clusters, in particular bound states and resonances. Systematic quantum statistical approaches allow to combine the nuclear statistical equilibrium description (law of mass action) with mean-field concepts. A chemical picture, which treats the clusters as distinct entities, serves as an intuitive concept to treat the low-density limit. Within a generalized Beth-Uhlenbeck approach, the quasiparticle virial expansion is extended to include arbitrary clusters, where special attention must be paid to avoid inconsistencies such as double counting. Correlations are suppressed with increasing density due to Pauli blocking. The contribution of the continuum to the virial coefficients can be reduced by considering clusters explicitly and introducing quasiparticle energies. The cluster-virial expansion for nuclear matter joins known benchmarks at low densities with those near saturation density.Comment: 18 pages, 6 figures, 2 table

    Symmetry energy of dilute warm nuclear matter

    Get PDF
    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular by the appearance of bound states. A recently developed quantum statistical (QS) approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.Comment: 4 pages, 2 figures, 1 tabl

    FIP EquityRx Collection: Inclusion for all, equity for all

    Get PDF

    Laser Additive Manufacturing of Gas Permeable Structures

    Get PDF
    Laser additive manufacturing offers a variety of new design possibilities. In mold making laser additive manufactured inserts with conformal cooling channels are already state of the art. Pneumatic ejectors for injection molds are a new application for laser additive manufacturing. The pneumatic ejectors require a durable gas permeable material. This material is produced by placing the scan vectors for the laser additive manufacturing process in a defined pattern. Trials with different plastics proofed the function and reliability of the pneumatic ejector concept in the injection molding cycle

    Nanostructural effects and interface magnetism in Co/Pd multilayers

    Get PDF
    A series of Co/Pd multilayers were made by dc magnetron sputter deposition on Al foil substrates. For these multilayered samples, Co layer thicknesses were less than 4 Å and Pd layers were varied from 4 to 22 Å. Sputtering rates were controlled by either sputtering power (10–50 W) or Ar sputtering pressure (3–15 mTorr). In both cases, lower deposition rates yielded higher perpendicular coercivity up to 2.6 kOe. Structures of the samples were studied using conventional θ -2θ x-ray diffractometry (XRD). It has been found that magnetic properties such as coercivity and saturation magnetization are sensitive to interfacial structures. A nanostructural model including interfacial parameters such as alloy layer composition is discussed and compared with the magnetization data. Both XRD and magnetization measurements show that the interfaces become more diffuse at higher sputtering pressures. Journal of Applied Physics is copyrighted by The American Institute of Physics

    Influence of the Additive Manufacturing System on the Design of a Microrectification Apparatus [Einfluss des additiven Fertigungsverfahrens auf die Gestalt einer Mikrorektifikationsapparatur]

    Get PDF
    Die additive Fertigung eröffnet auch in der Verfahrenstechnik neue Möglichkeiten. In der Entwicklung kompakter Rektifikationsapparate sind Vorteile für die Herstellung ebenso wie für die Trennleistung denkbar. Der Designprozess für kompakte, fertigungsgerechte Mikrorektifikationsapparate für zwei Metall-3D-Druck-Verfahren wird gezeigt: Binder-Jetting (BJT/M) und pulverbettbasiertes Schmelzen von Metallen mittels Laser (PBF-LB/M). Restriktionen der Verfahren, z. B. in Bezug auf Überhänge und die Entpulverungs- und Sinterschritte, werden erklärt. Die erste Charakterisierung der gedruckten Teile zeigt, dass die Entwürfe vielversprechend sind

    Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

    Full text link
    A new scheme for testing nuclear matter equations of state (EsoS) at high densities using constraints from neutron star phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable EoS shall not allow the direct Urca process to occur in neutron stars with masses below 1.5 M1.5~M_{\odot}, and also shall not contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass measurements of 2.1 +/- 0.2 M_sun (1 sigma level) for PSR J0751+1807, of 2.0 +/- 0.1 M_sun from the innermost stable circular orbit for 4U 1636-536, the baryon mass - gravitational mass relationships from Pulsar B in J0737-3039 and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal emission of RX J1856-3754. This scheme is applied to a set of relativistic EsoS constrained otherwise from nuclear matter saturation properties with the result that no EoS can satisfy all constraints simultaneously, but those with density-dependent masses and coupling constants appear most promising.Comment: 15 pages, 8 figures, 5 table

    Hyperons and massive neutron stars: the role of hyperon potentials

    Full text link
    The constituents of cold dense matter are still far from being understood. However, neutron star observations such as the recently observed pulsar PSR J1614-2230 with a mass of 1.97+/-0.04 M_solar help to considerably constrain the hadronic equation of state (EoS). We systematically investigate the influence of the hyperon potentials on the stiffness of the EoS. We find that they have but little influence on the maximum mass compared to the inclusion of an additional vector meson mediating repulsive interaction amongst hyperons. The new mass limit can only be reached with this additional meson regardless of the hyperon potentials. Further, we investigate the impact of the nuclear compression modulus and the effective mass of the nucleon at saturation density on the high density regime of the EoS. We show that the maximum mass of purely nucleonic stars is very sensitive to the effective nucleon mass but only very little to the compression modulus.Comment: 24 pages, 8 figure

    Phase diagrams in nonlocal PNJL models constrained by Lattice QCD results

    Full text link
    Based on lattice QCD-adjusted SU(2) nonlocal Polyakov--Nambu--Jona-Lasinio (PNJL) models, we investigate how the location of the critical endpoint in the QCD phase diagram depends on the strenght of the vector meson coupling, as well as the Polyakov-loop (PL) potential and the form factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator. The strength of the vector coupling is adjusted such as to reproduce the slope of the pseudocritical temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical potentials than in the case without it.Comment: 23 pages, 10 figures. Version accepted in Phys. Part. Nucl. Lett. (to appear), references adde
    corecore