The symmetry energy of nuclear matter is a fundamental ingredient in the
investigation of exotic nuclei, heavy-ion collisions and astrophysical
phenomena. New data from heavy-ion collisions can be used to extract the free
symmetry energy and the internal symmetry energy at subsaturation densities and
temperatures below 10 MeV. Conventional theoretical calculations of the
symmetry energy based on mean-field approaches fail to give the correct
low-temperature, low-density limit that is governed by correlations, in
particular by the appearance of bound states. A recently developed quantum
statistical (QS) approach that takes the formation of clusters into account
predicts symmetry energies that are in very good agreement with the
experimental data. A consistent description of the symmetry energy is given
that joins the correct low-density limit with quasiparticle approaches valid
near the saturation density.Comment: 4 pages, 2 figures, 1 tabl