271 research outputs found

    Purine nucleoside phosphorylase: A new marker for free oxygen radical injury to the endothelial cell

    Get PDF
    The effect of ischemia and reperfusion on purine nucleoside phosphorylase was studied in an isolated perfused rat liver model. This enzyme is localized primarily in the cytoplasm of the endothelial and Kupffer cells; some activity is associated with the parenchymal cells. Levels of this enzyme accurately predicted the extent of ischemia and reperfusion damage to the microvascular endothelial cell of the liver. Livers from Lewis rats were subjected to 30, 45 and 60 min of warm (37° C) no flow ischemia that was followed by a standard reperfusion period lasting 45 min. Purine nucleoside phosphorylase was measured at the end of the no flow ischemia and reperfusion periods as was superoxide generation (O2‐). Bile production was monitored throughout the no flow ischemia and reperfusion periods. Control perfusions were carried out for 120 min. A significant rise in purine nucleoside phosphorylase levels as compared with controls was observed at the end of ischemia in all the three groups. The highest level, 203.5 ± 29.2 mU/ml, was observed after 60 min of ischemia. After the reperfusion period, levels of purine nucleoside phosphorylase decreased in the 30‐ and 45‐min groups 58.17 ± 9.66 mU/ml and 67.5 ± 17.1 mU/ml, respectively. These levels were equal to control perfusions. In contrast, after 60 min of ischemia, levels of purine nucleoside phosphorylase decreased early in the reperfusion period and then rose to 127.8 ± 14.8 mU/ml by the end of reperfusion (p < 0.0001). Superoxide generation at the beginning of reperfusion was higher than in controls with similar values observed at the end of 30, 45 and 60 min of ischemia. During reperfusion, production of superoxide continued. Bile production was significantly lower at the end of 30 min (0.044 ± 0.026 μl/min/gm), 45 min (0.029 ± 0.0022 μ/min/gm) and 60 min of ischemia (0.022 ± 0.008 μ/min/gm) when compared with bile production by control livers during the corresponding time (0.680 ± 0.195, 0.562 ± 0.133 and 0.480 ± 0.100 μ/min/gm respectively; p < 0.001). During reperfusion, rates of bile production were normal after 30 and 45 min of ischemia. In contrast, significantly lower rates of bile production, 0.046 ± 0.36 μ/min/gm (p < 0.001) occurred during reperfusion after 60 min of ischemia. Control livers during the same period produced 0.330 ± 0.056 μl/min/gm of bile. The results indicate that purine nucleoside phosphorylase levels may be a good index of oxidative injury to the liver in ischemia reperfusion and reliably predict the functional state of the organ after reperfusion. Copyright © 1990 American Association for the Study of Liver Disease

    Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro

    Get PDF
    Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm E. multilocularis, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC in vitro and show that E/S-products of larvae of the chronic stage lead to an in vitro expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of E. multilocularis larvae within the host

    Induction of apoptosis in myeloid leukaemic cells by ribozymes targeted against AML1/MTG8

    Get PDF
    The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this fusion transcript and also inhibit the proliferation of myeloid leukaemia cell line Kasumi-1 which possesses t(8;21)(q22;q22). In this study, we investigated the mechanisms of inhibition of proliferation in myeloid leukaemic cells with t(8;21)(q22;q22) by ribozymes. These ribozymes specifically inhibited the growth of Kasumi-1 cells, but did not affect the leukaemic cells without t(8;21)(q22;q22). We observed the morphological changes including chromatin condensation, fragmentation and the formation of apoptotic bodies in Kasumi-1 cells incubated with ribozymes for 7 days. In addition, DNA ladder formation was also detected after incubation with ribozymes which suggested the induction of apoptosis in Kasumi-1 cells by the AML1/MTG8 ribozymes. However, the ribozymes did not induce the expression of CD11b and CD14 antigens in Kasumi-1 cells. The above data suggest that these ribozymes therefore inhibit the growth of myeloid leukaemic cells with t(8;21)(q22;q22) by the induction of apoptosis, but not differentiation. We conclude therefore that the ribozymes targeted against AML1/MTG8 may have therapeutic potential for patients with AML carrying t(8;21)(q22;q22) while, in addition, the product of the chimeric gene is responsible for the pathogenesis of myeloid leukaemia. © 1999 Cancer Research Campaig

    Inducible Nitric Oxide Synthase (iNOS) and Nitric Oxide (NO) are Important Mediators of Reflux-induced Cell Signalling in Esophageal Cells

    Get PDF
    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) has been implicated in both DNA damage induction and aberrant cell signalling in various tissue and cell backgrounds. We investigated here the role of iNOS and NO in DNA damage induction and nuclear factor-kappa B (NF-κB) signalling in esophageal cells in vitro. As esophageal adenocarcinoma develops in a background of Barrett’s esophagus secondary to reflux disease, it is possible that inflammatory mediators like NO may be important in esophageal cancer development. We show that reflux components like stomach acid and bile acids [deoxycholic acid (DCA)] can induce iNOS gene and protein expression and produce NO generation in esophageal cells, using real-time PCR, western blotting and NO sensitive fluorescent probes, respectively. This up-regulation of iNOS expression was not dependent on NF-κB activity. DCA-induced DNA damage was independent of NF-κB and only partially dependent on iNOS and NO, as measured by the micronucleus assay. These same reflux constituents also activated the oncogenic transcription factor NF-κB, as measured by transcription factor enzyme-linked immunosorbent assay and gene expression studies with NF-κB linked genes (e.g. interleukin-8). Importantly, we show here for the first time that basal levels of NF-κB activity (and possibly acid and DCA-induced NF-κB) are dependent on iNOS/NO and this may lead to a positive feedback loop whereby induced iNOS is upstream of NF-κB, hence prolonging and potentially amplifying this signalling, presumably through NO activation of NF-κB. Furthermore, we confirm increased protein levels of iNOS in esophageal adenocarcinoma and, therefore, in neoplastic development in the esophagus

    Co-existence of acute myeloid leukemia with multilineage dysplasia and Epstein-Barr virus-associated T-cell lymphoproliferative disorder in a patient with rheumatoid arthritis: a case report

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune disease mediated by inflammatory processes mainly at the joints. Recently, awareness of Epstein-Barr virus (EBV)-associated T-cell lymphoproliferative disorder (T-LPD) has been heightened for its association with methotraxate usage in RA patients. In the contrary, acute myeloid leukemia with multilineage dysplasia (AML-MLD) has never been documented to be present concomitantly with the above two conditions. In this report we present a case of an autopsy-proven co-existence of AML-MLD and EBV-associated T-LPD in a patient with RA

    Overexpression of Nrdp1 in the Heart Exacerbates Doxorubicin-Induced Cardiac Dysfunction in Mice

    Get PDF
    BACKGROUND: Cardiac cell death and generation of oxidative stress contribute to doxorubicin (DOX)-induced cardiac dysfunction. E3 ligase Nrdp1 plays a critical role in the regulation of cell apoptosis, inflammation and production of reactive oxygen species (ROS), which may contribute to heart failure. However, the role of Nrdp1 in DOX-induced cardiac injury remains to be determined. METHODS AND RESULTS: We examined the effect of Nrdp1 overexpression with DOX treatment in rat neonatal cardiomyocytes and mouse heart tissue. Cardiomyocytes were infected with adenovirus containing GFP (Ad-GFP), Nrdp1 wild-type (Ad-Nrdp1) or the dominant-negative form of Nrdp1 (Ad-Dn-Nrdp1), then treated with DOX for 24 hr. DOX treatment increased cell death and apoptosis, with Ad-Nrdp1 infection enhancing these actions but Ad-Dn-Nrdp1 infection attenuating these effects. Furthermore, 5 days after a single injection of DOX (20 mg/kg, intraperitoneally), Nrdp1 transgenic mice (TG) showed decreased cardiac function and increased apoptosis, autophagy and oxidative stress as compared with wild-type (WT) mice (P<0.01). Survival rate was significantly lower in Nrdp1 TG mice than in WT mice 10 days after DOX injection (P<0.01). CONCLUSIONS/SIGNIFICANCE: These results were associated with decreased activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. Nrdp1 may be a key mediator in the development of cardiac dysfunction after DOX treatment and associated with inhibition of Akt, ERK1/2 and STAT3. Nrdp1 may be a new therapeutic target in protecting against the cardiotoxic effects of DOX

    Cloning and Functional Studies of a Splice Variant of CYP26B1 Expressed in Vascular Cells

    Get PDF
    Background: All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several cytochromes P450 isoforms (CYPs). CYP26 may be the most important regulator of atRA catabolism in vascular cells. The present study describes the molecular cloning, characterization and function of atRA-induced expression of a spliced variant of the CYP26B1 gene. Methodology/Principal Findings: The coding region of the spliced CYP26B1 lacking exon 2 was amplified from cDNA synthesized from atRA-treated human aortic smooth muscle cells and sequenced. Both the spliced variant and full length CYP26B1 was found to be expressed in cultured human endothelial and smooth muscle cells, and in normal and atherosclerotic vessel. atRA induced both variants of CYP26B1 in cultured vascular cells. Furthermore, the levels of spliced mRNA transcript were 4.5 times higher in the atherosclerotic lesion compared to normal arteries and the expression in the lesions was increased 20-fold upon atRA treatment. The spliced CYP26B1 still has the capability to degrade atRA, but at an initial rate one-third that of the corresponding full length enzyme. Transfection of COS-1 and THP-1 cells with the CYP26B1 spliced variant indicated either an increase or a decrease in the catabolism of atRA, probably depending on the expression of other atRA catabolizing enzymes in the cells. Conclusions/Significance: Vascular cells express the spliced variant of CYP26B1 lacking exon 2 and it is also increased in atherosclerotic lesions. The spliced variant displays a slower and reduced degradation of atRA as compared to the full-length enzyme. Further studies are needed, however, to clarify the substrate specificity and role of the CYP26B1 splice variant in health and disease

    Cyclopentenyl cytosine increases gemcitabine radiosensitisation in human pancreatic cancer cells

    Get PDF
    The deoxycytidine analogue 2′,2′-difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a potent radiosensitiser, but has limited efficacy in combination with radiotherapy in patients with pancreatic cancer due to acute toxicity. We investigated whether cyclopentenyl cytosine (CPEC), targetting the ‘de novo' biosynthesis of cytidine triphosphate (CTP), could increase dFdC cytotoxicity alone or in combination with irradiation in a panel of human pancreatic cancer cells (Panc-1, Miapaca-2, BxPC-3). To investigate the role of deoxycytidine kinase (dCK), the rate-limiting enzyme in the activation of dFdC, human lung cancer cells without (dFdC-resistant SWg) and with an intact dCK gene (dFdC-sensitive SWp) were included. We found that CPEC (100–1000 nmol l−1) specifically reduced CTP levels in a dose-dependent manner that lasted up to 72 h in all cell lines. Preincubation with CPEC resulted in a dose-dependent increase in dFdC incorporated into the DNA only in dFdC-sensitive cells. Consequently, CPEC increased the effectiveness of dFdC (300 nmol l−1 for 4 h) only in dFdC-sensitive cells, which was accompanied by an increase in apoptosis. We also found that CPEC enhanced the radiosensitivity of cells treated with dFdC (30–300 nmol l−1 for 4 h). These results indicate that CPEC enhances the cytotoxicity of dFdC alone and in combination with irradiation in several human tumour cell lines with an intact dCK gene

    The Hookworm Tissue Inhibitor of Metalloproteases (Ac-TMP-1) Modifies Dendritic Cell Function and Induces Generation of CD4 and CD8 Suppressor T Cells

    Get PDF
    Hookworm infection is a major cause of disease burden for humans. Recent studies have described hookworm-related immunosuppression in endemic populations and animal models. A Tissue Inhibitor of Metalloproteases (Ac-TMP-1) has been identified as one of the most abundant proteins released by the adult parasite. We investigated the effect of recombinant Ac-TMP-1 on dendritic cell (DC) and T cell function. Splenic T cells from C57BL/6 mice injected with Ac-TMP-1 showed reduced proliferation to restimulation with anti CD3 or bystander antigens such as OVA. Incubation of bone marrow-derived DCs with Ac-TMP-1 decreased MHC Class I and, especially, Class II expression but increased CD86 and IL-10 expression. Co-incubation of splenic T cells with DCs pulsed with Ac-TMP-1 induced their differentiation into CD4+ and, particularly, CD8+ CD25+Foxp3+ T cells that expressed IL-10. These cells were able to suppress proliferation of naïve and activated CD4+ T cells by TGF-Β-dependent (CD4+ suppressors) or independent (CD8+ suppressors) mechanisms. Priming of DCs with non-hookworm antigens, such as OVA, did not result in the generation of suppressor T cells. These data indicate that Ac-TMP-1 initiates the development of a regulatory response through modifications in DC function and generation of suppressor T cells. This is the first report to propose a role of suppressor CD8+ T cells in gastrointestinal helminthic infections
    corecore