136 research outputs found

    Integrated seawater sampler and data acquisition system prototype : final report

    Get PDF
    This report documents the work performed by the Woods Hole Oceanographic Institution (WHOI) and the Battelle Memorial Institute from August 1988 to December 1992 in the NSF sponsored development of an Integrated Seawater Sampler and Data Acquisition Prototype. After a 6-month initial design study, a prototype underwater profiing unit was designed and constructed, containing the water acquisition subsystem, CTD and altimeter, control circuitry and batteries. A standard WHOI CTD was adapted for use in the underwater unit and was interfaced to the underwater controller which had a telemetry module connecting ít with a deck control unit. This enabled CTD data to be logged in normal fashion on shipboard while additional commands and diagnostics were sent over the telemetry link to command the underwater unit's water sampling process and receive diagnostic information on system performance. The water sampling subsystem consisted of 36 trays, each containing a plastic sample bag, the pump and control circuitry. The sample bags, initially sealed in a chemically clean environment, were opened by pumping the water out of the tray, thus forcing water into the bag by ambient pressure. The command system could select any bag, and control the water sampling procss from the surface with diagnostic information on system altitude, depth, orientation and cable tension displayed in real time for operator information. At sea tests confirmed the operation of the electrical and control system. Problems were encountered with the bags and seals which were partially solved by further post cruise efforts. However, the bag closing mechanism requires further development, and numerous small system improvements identified during the cruises need to be implemented to produce an operational water sampler. Finally, initial design tor a water sampler handling and storage unit and water extraction system were developed but not implemented. The detailed discussion of the prototype water sampler design, testing and evaluation, and new bag testing result are presented.Funding was provided by the National Science Foundation through Grant No. OCE8821977

    Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    Get PDF
    The data set supporting the results of this article is available in the Dryad repository, http://dx.doi.org/10.5061/dryad.6f4qs. Moustakas, A. and Evans, M. R. (2015) Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values.Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose

    Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases

    Get PDF
    Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.This work was supported by Postdoctoral Fellowship 0920079G from the American Heart Association (to TM), by National Institutes of Health Grant HL065217, by American Heart Association Grant In-Aid 09GRNT2110159, by a grant from the Jerome Lejeune Foundation (all to JPK) and by a research contract RYC2009-04147 (to ALP). In addition, grant support (P11-CTS-07187, CSD2009-00088 and BIO2012-34937) to Dr. Jose M. Sanchez-Ruiz (University of Granada) and SGIker technical and human support (UPV/EHU, MICINN, GV/EJ, ESF) are gratefully acknowledged

    Paths Explored, Paths Omitted, Paths Obscured: Decision Points & Selective Reporting in End-to-End Data Analysis

    Full text link
    Drawing reliable inferences from data involves many, sometimes arbitrary, decisions across phases of data collection, wrangling, and modeling. As different choices can lead to diverging conclusions, understanding how researchers make analytic decisions is important for supporting robust and replicable analysis. In this study, we pore over nine published research studies and conduct semi-structured interviews with their authors. We observe that researchers often base their decisions on methodological or theoretical concerns, but subject to constraints arising from the data, expertise, or perceived interpretability. We confirm that researchers may experiment with choices in search of desirable results, but also identify other reasons why researchers explore alternatives yet omit findings. In concert with our interviews, we also contribute visualizations for communicating decision processes throughout an analysis. Based on our results, we identify design opportunities for strengthening end-to-end analysis, for instance via tracking and meta-analysis of multiple decision paths

    Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts

    Get PDF
    Protein misfolding has been proposed to be a common pathogenic mechanism in many inborn errors of metabolism including cystathionine β-synthase (CBS) deficiency. In this work, we describe the structural properties of nine CBS mutants that represent a common molecular pathology in the CBS gene. Using thermolysin in two proteolytic techniques, we examined conformation of these mutants directly in crude cell extracts after expression in E. coli. Proteolysis with thermolysin under native conditions appeared to be a useful technique even for very unstable mutant proteins, whereas pulse proteolysis in a urea gradient had limited values for the study of the majority of CBS mutants due to their instability. Mutants in the active core had either slightly increased unfolding (p.A114V, p.E302K and p.G307S) or extensive unfolding with decreased stability (p.H65R, p.T191M, p.I278T and p.R369C). The extent of the unfolding inversely correlated with the previously determined degree of tetrameric assembly and with the catalytic activity. In contrast, mutants bearing aminoacid substitutions in the C-terminal regulatory domain (p.R439Q and p.D444N) had increased global stability with decreased flexibility. This study shows that proteolytic techniques can reveal conformational abnormalities even for CBS mutants that have activity and/or a degree of assembly similar to the wild-type enzyme. We present here a methodological strategy that may be used in cell lysates to evaluate properties of proteins that tend to misfold and aggregate and that may be important for conformational studies of disease-causing mutations in the field of inborn errors of metabolism

    Intrapopulation Variability Shaping Isotope Discrimination and Turnover: Experimental Evidence in Arctic Foxes

    Get PDF
    Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (δ15N and δ13C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus. We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3‰ to 5.3‰ (mean = 2.6‰) for δ15N and from 0.2‰ to 2.9‰ (mean = 0.9‰) for δ13C. We also found an impact of population structure on δ15N half-life in blood cells. Varying across individuals, δ15N half-life in plasma (6 to 10 days) was also shorter than for δ13C (14 to 22 days), though δ15N and δ13C half-lives are usually considered as equal. Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies

    Developing Global Maps of the Dominant Anopheles Vectors of Human Malaria

    Get PDF
    Simon Hay and colleagues describe how the Malaria Atlas Project has collated anopheline occurrence data to map the geographic distributions of the dominant mosquito vectors of human malaria
    corecore