354 research outputs found

    Stellar winds, dead zones, and coronal mass ejections

    Get PDF
    Axisymmetric stellar wind solutions are presented, obtained by numerically solving the ideal magnetohydrodynamic (MHD) equations. Stationary solutions are critically analysed using the knowledge of the flux functions. These flux functions enter in the general variational principle governing all axisymmetric stationary ideal MHD equilibria. The magnetized wind solutions for (differentially) rotating stars contain both a `wind' and a `dead' zone. We illustrate the influence of the magnetic field topology on the wind acceleration pattern, by varying the coronal field strength and the extent of the dead zone. This is evident from the resulting variations in the location and appearance of the critical curves where the wind speed equals the slow, Alfven, and fast speed. Larger dead zones cause effective, fairly isotropic acceleration to super-Alfvenic velocities as the polar, open field lines are forced to fan out rapidly with radial distance. A higher field strength moves the Alfven transition outwards. In the ecliptic, the wind outflow is clearly modulated by the extent of the dead zone. The combined effect of a fast stellar rotation and an equatorial `dead' zone in a bipolar field configuration can lead to efficient thermo-centrifugal equatorial winds. Such winds show both a strong poleward collimation and some equatorward streamline bending due to significant toroidal field pressure at mid-latitudes. We discuss how coronal mass ejections are then simulated on top of the transonic outflows.Comment: scheduled for Astrophys. J. 530 #2, Febr.20 2000 issue. 9 figures (as 6 jpeg and 8 eps files

    Convective magneto-rotational instabilities in accretion disks

    Full text link
    We present a study of instabilities occuring in thick magnetized accretion disks. We calculate the growth rates of these instabilities and characterise precisely the contribution of the magneto-rotational and the convective mechanism. All our calculations are performed in radially stratified disks in the cylindrical limit. The numerical calculations are performed using the appropriate local dispersion equation solver discussed in Blokland et al. (2005). A comparison with recent results by Narayan et al. (2002) shows excellent agreement with their approximate growth rates only if the disks are weakly magnetized. However, for disks close to equipartition, the dispersion equation from Narayan et al. (2002) loses its validity. Our calculations allow for a quantitative determination of the increase of the growth rate due to the magneto-rotational mechanism. We find that the increase of the growth rate for long wavelength convective modes caused by this mechanism is almost neglible. On the other hand, the growth rate of short wavelength instabilities can be significantly increased by this mechanism, reaching values up to 60%.Comment: 10 pages, 9 figures, Accepted for publication in Astronomy & Astrophysic

    Four-well tunneling states and elastic response of clathrates

    Full text link
    We present resonant ultrasound elastic constant measurements of the clathrate compounds Eu8Ga16Ge30 and Sr8Ga16Ge30. The elastic response of the Eu clathrate provides clear evidence for the existence of a new type of four-well tunneling states, described by two nearly degenerate four level systems (FLS). The FLS's are closely linked with the fourfold split positions of Eu known from neutron diffraction density profiles. Using a realistic potential we estimate the tunneling frequencies and show that the energy gap between the two FLS's is of the same order as the Einstein oscillator frequency. This explains why the observed harmonic oscillator type specific heat is not modified by tunneling states. In addition the quadrupolar interaction of FLS's with elastic strains explains the pronounced depression observed in elastic constant measurements. In the case of the Sr clathrate, we show that the shallow dip in the elastic constant c44 is explained using the same type of quadrupolar interaction with a soft Einstein mode instead of a FLS.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter

    Parametric survey of longitudinal prominence oscillation simulations

    Full text link
    It is found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. An extensive parameter survey results in a scaling law, showing that the period of the oscillation, which weakly depends on the length and height of the prominence, and the amplitude of the perturbations, scales with R/g\sqrt{R/g_\odot}, where RR represents the curvature radius of the dip, and gg_\odot is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes non-negligible for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Compared to heat conduction, the radiative cooling is the dominant factor leading to the damping. A scaling law for the damping timescale is derived, i.e., τl1.63D0.66w1.21v00.30\tau\sim l^{1.63} D^{0.66}w^{-1.21}v_{0}^{-0.30}, showing strong dependence on the prominence length ll, the geometry of the magnetic dip (characterized by the depth DD and the width ww), and the velocity perturbation amplitude v0v_0. The larger the amplitude, the faster the oscillation damps. It is also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.Comment: 17 PAGES, 8FIGURE

    Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3

    Get PDF
    Zn4Sb3 undergoes a phase transition from alpha to beta phase at T1[approximate]250 K. The high temperature beta-Zn4Sb3 phase has been widely investigated as a potential state-of-the-art thermoelectric (TE) material, due to its remarkably low thermal conductivity. We have performed electronic and thermal transport measurements exploring the structural phase transition at 250 K. The alpha to beta phase transition manifests itself by anomalies in the resistivity, thermopower, and specific heat at 250 K as well as by a reduction in the thermal conductivity as Zn4Sb3 changes phase from the ordered alpha to the disordered beta-phase. Moreover, measurements of the elastic constants using resonant ultrasound spectroscopy (RUS) reveal a dramatic softening at the order-disorder transition upon warming. These measurements provide further evidence that the remarkable thermoelectric properties of beta-Zn4Sb3 are tied to the disorder in the crystal structure

    Angular Momentum Evolution of Stars in the Orion Nebula Cluster

    Full text link
    (Abridged) We present theoretical models of stellar angular momentum evolution from the Orion Nebula Cluster (ONC) to the Pleiades and the Hyades. We demonstrate that observations of the Pleiades and Hyades place tight constraints on the angular momentum loss rate from stellar winds. The observed periods, masses and ages of ONC stars in the range 0.2--0.5 M_\odot, and the loss properties inferred from the Pleiades and Hyades stars, are then used to test the initial conditions for stellar evolution models. We use these models to estimate the distribution of rotational velocities for the ONC stars at the age of the Pleiades (120 Myr). The modeled ONC and observed Pleiades distributions of rotation rates are not consistent if only stellar winds are included. In order to reconcile the observed loss of angu lar momentum between these two clusters, an extrinsic loss mechanism such as protostar-accretion disk interaction is required. Our model, which evolves the ONC stars with a mass dependent saturation threshold normalized such that ωcrit=5.4ω\omega_{crit} = 5.4 \omega_\odot at 0.5 \m, and which includes a distribution of disk lifetimes that is uniform over the range 0--6 Myr, is consistent with the Pleiades. This model for disk-locking lifetimes is also consistent with inferred disk lifetimes from the percentage of stars with infrared excesses observed in young clusters. Different models, using a variety of initial period distributions and different maximum disk lifetimes, are also compared to the Pleiades. For disk-locking models that use a uniform distribution of disk lifetimes over the range 0 to τmax\tau_{max}, the acceptable range of the maximum lifetime is 3.5<τmax<8.53.5 < \tau_{max} < 8.5 Myr.Comment: 21 pages, 7 figures, submitted to Ap

    Relativistic AGN jets III. Synthesis of synchrotron emission from Double-Double Radio Galaxies

    Get PDF
    The class of Double-Double Radio Galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper we synthesize synchrotron images for DDRGs based on special relativistic hydrodynamic simulations, making advanced approximations for the magnetic fields. We study the synchrotron images for: Three different radial jet profiles; Ordered, entangled or mixed magnetic fields; Spectral ageing from synchrotron cooling; The contribution from different jet components; The viewing angle and Doppler (de-)boosting; The various epochs of the evolution of the DDRG. To link our results to observational data, we adopt to J1835+6204 as a reference source. In all cases the synthesized synchrotron images show two clear pairs of hotspots, in the inner and outer lobes. The best resemblance is obtained for the piecewise isochoric jet model, for a viewing angle of approximately ϑ71\vartheta \sim -71^{\circ}, i.e. inclined with the lower jet towards the observer, with predominantly entangled (70\gtrsim 70 per cent of the magnetic pressure) in turbulent, rather than ordered fields. The effects of spectral ageing become significant when the ratio of observation frequencies and cut-off frequency νobs/ν,0103\nu_{\rm obs}/\nu_{\infty,0} \gtrsim 10^{-3}, corresponding to 3102\sim 3 \cdot 10^2 MHz. For viewing angles ϑ30\vartheta \lesssim -30^{\circ}, a DDRG morphology can no longer be recognized. The second jets must be injected within \lesssim 4 per cent of the lifetime of the first jets for a DDRG structure to emerge, which is relevant for Active Galactic Nuclei feedback constraints.Comment: 24 pages, 8 figure

    Toward detailed prominence seismology - II. Charting the continuous magnetohydrodynamic spectrum

    Full text link
    Starting from accurate MHD flux rope equilibria containing prominence condensations, we initiate a systematic survey of their linear eigenoscillations. To quantify the full spectrum of linear MHD eigenmodes, we require knowledge of all flux-surface localized modes, charting out the continuous parts of the MHD spectrum. We combine analytical and numerical findings for the continuous spectrum for realistic prominence configurations. The equations governing all eigenmodes for translationally symmetric, gravitating equilibria containing an axial shear flow, are analyzed, along with their flux-surface localized limit. The analysis is valid for general 2.5D equilibria, where either density, entropy, or temperature vary from one flux surface to another. We analyze the mode couplings caused by the poloidal variation in the flux rope equilibria, by performing a small gravity parameter expansion. We contrast the analytical results with continuous spectra obtained numerically. For equilibria where the density is a flux function, we show that continuum modes can be overstable, and we present the stability criterion for these convective continuum instabilities. Furthermore, for all equilibria, a four-mode coupling scheme between an Alfvenic mode of poloidal mode number m and three neighboring (m-1, m, m+1) slow modes is identified, occurring in the vicinity of rational flux surfaces. For realistically prominence equilibria, this coupling is shown to play an important role, from weak to stronger gravity parameter g values. The analytic predictions for small g are compared with numerical spectra, and progressive deviations for larger g are identified. The unstable continuum modes could be relevant for short-lived prominence configurations. The gaps created by poloidal mode coupling in the continuous spectrum need further analysis, as they form preferred frequency ranges for global eigenoscillations.Comment: Accepted by Astronmy & Astrophysics, 21 pages, 15 figure
    corecore