94 research outputs found

    Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    Get PDF
    Background: The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains.Methods: Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance.Results: We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome-and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred.Conclusion: This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns

    Androgen-Regulated Transcriptional Control of Sialyltransferases in Prostate Cancer Cells

    Get PDF
    The expression of gangliosides is often associated with cancer progression. Sialyltransferases have received much attention in terms of their relationship with cancer because they modulate the expression of gangliosides. We previously demonstrated that GD1a production was high in castration-resistant prostate cancer cell lines, PC3 and DU145, mainly due to their high expression of β-galactoside α2,3-sialyltransferase (ST3Gal) II (not ST3Gal I), and the expression of both ST3Gals was regulated by NF-κB, mainly by RelB. We herein demonstrate that GD1a was produced in abundance in cancerous tissue samples from human patients with hormone-sensitive prostate cancers as well as castration-resistant prostate cancers. The expression of ST3Gal II was constitutively activated in castration-resistant prostate cancer cell lines, PC3 and DU145, because of the hypomethylation of CpG island in its promoter. However, in androgen-depleted LNCap cells, a hormone-sensitive prostate cancer cell line, the expression of ST3Gal II was silenced because of the hypermethylation of the promoter region. The expression of ST3Gal II in LNCap cells increased with testosterone treatment because of the demethylation of the CpG sites. This testosterone-dependent ST3Gal II expression was suppressed by RelB siRNA, indicating that RelB activated ST3Gal II transcription in the testosterone-induced demethylated promoter. Therefore, in hormone-sensitive prostate cancers, the production of GD1a may be regulated by androgen. This is the first report indicating that the expression of a sialyltransferase is transcriptionally regulated by androgen-dependent demethylation of the CpG sites in its gene promoter

    DNA Demethylation and USF Regulate the Meiosis-Specific Expression of the Mouse Miwi

    Get PDF
    Miwi, a member of the Argonaute family, is required for initiating spermiogenesis; however, the mechanisms that regulate the expression of the Miwi gene remain unknown. By mutation analysis and transgenic models, we identified a 303 bp proximal promoter region of the mouse Miwi gene, which controls specific expression from midpachytene spermatocytes to round spermatids during meiosis. We characterized the binding sites of transcription factors NF-Y (Nuclear Factor Y) and USF (Upstream Stimulatory Factor) within the core promoter and found that both factors specifically bind to and activate the Miwi promoter. Methylation profiling of three CpG islands within the proximal promoter reveals a markedly inverse correlation between the methylation status of the CpG islands and germ cell type–specific expression of Miwi. CpG methylation at the USF–binding site within the E2 box in the promoter inhibits the binding of USF. Transgenic Miwi-EGFP and endogenous Miwi reveal a subcellular co-localization pattern in the germ cells of the Miwi-EGFP transgenic mouse. Furthermore, the DNA methylation profile of the Miwi promoter–driven transgene is consistent with that of the endogenous Miwi promoter, indicating that Miwi transgene is epigenetically modified through methylation in vivo to ensure its spatio-temporal expression. Our findings suggest that USF controls Miwi expression from midpachytene spermatocytes to round spermatids through methylation-mediated regulation. This work identifies an epigenetic regulation mechanism for the spatio-temporal expression of mouse Miwi during spermatogenesis

    Inhibition of histone methyltransferase DOT1L silences ER alpha gene and blocks proliferation of antiestrogen-resistant breast cancer cells

    Get PDF
    Breast cancer (BC) resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor alpha (ER alpha) signaling, and ways to block ERa pathway in these tumors are sought after. We identified the H3K79 methyltransferase DOT1L as a novel cofactor of ER alpha in BC cell chromatin, where the two proteins colocalize to regulate estrogen target gene transcription. DOT1L blockade reduces proliferation of hormone-responsive BC cells in vivo and in vitro, consequent to cell cycle arrest and apoptotic cell death, with widespread effects on ER-dependent gene transcription, including ER alpha and FOXA1 gene silencing. Antiestrogen-resistant BC cells respond to DOT1L inhibition also in mouse xenografts, with reduction in ER alpha levels, H3K79 methylation, and tumor growth. These results indicate that DOT1L is an exploitable epigenetic target for treatment of endocrine therapy-resistant ER alpha-positive BCs

    Ultradian Cortisol Pulsatility Encodes a Distinct, Biologically Important Signal

    Get PDF
    Cortisol is released in ultradian pulses. The biological relevance of the resulting fluctuating cortisol concentration has not been explored.Determination of the biological consequences of ultradian cortisol pulsatility.A novel flow through cell culture system was developed to deliver ultradian pulsed or continuous cortisol to cells. The effects of cortisol dynamics on cell proliferation and survival, and on gene expression were determined. In addition, effects on glucocorticoid receptor (GR) expression levels and phosphorylation, as a potential mediator, were measured.Pulsatile cortisol caused a significant reduction in cell survival compared to continuous exposure of the same cumulative dose, due to increased apoptosis. Comprehensive analysis of the transcriptome response by microarray identified genes with a differential response to pulsatile versus continuous glucocorticoid delivery. These were confirmed with qRT-PCR. Several transcription factor binding sites were enriched in these differentially regulated target genes, including CCAAT-displacement protein (CDP). A CDP regulated reporter gene (MMTV-luc) was, as predicted, also differentially regulated by pulsatile compared to continuous cortisol delivery. Importantly there was no effect of cortisol delivery kinetics on either GR expression, or activation (GR phosphoSer(211)).Cortisol oscillations exert important effects on target cell gene expression, and phenotype. This is not due to differences in cumulative cortisol exposure, or either expression, or activation of the GR. This suggests a novel means to regulate GR function

    Statistical Inference of In Vivo Properties of Human DNA Methyltransferases from Double-Stranded Methylation Patterns

    Get PDF
    DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model (HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo at three loci in humans: two densely methylated inactive X (Xi)-linked loci ( and ), and an autosomal locus (), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity of DNMT1 at and , with the mean association tract length being a few hundred base pairs. Regardless of tissue types, methylation patterns at are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker processivity), and much longer non-association tracts than human DNMT1 in vivo

    Reversal of Cocaine-Conditioned Place Preference through Methyl Supplementation in Mice: Altering Global DNA Methylation in the Prefrontal Cortex

    Get PDF
    Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction
    corecore