376 research outputs found

    Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling

    Get PDF
    Overview and Regions of Subcooled Flow Boiling Consider a subcooled liquid flowing in a heated channel. As long as the channel wall is below the local saturation temperature of the liquid, heat transfer is by single-phase mode. As the wall temperature exceeds the saturation temperature, boiling can be initiated depending on the wall, heater surface, and flow conditions. The boiling process in the subcooled flow improves the heat transfer rate considerably over the single-phase value. Subcooled flow boiling has therefore received considerable attention where high-heat-flux cooling is required, such as in emergency core cooling of nuclear reactors, first-wall cooling of fusion reactors, neutron generators for cancer therapy and material testing, highpower electronic applications, cooling of rocket nozzles, and pressurized water reactor

    Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Get PDF
    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated

    Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

    Get PDF
    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics

    Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes

    Get PDF
    The effects produced by the condensation of water vapor from the environment in the various intricate nanoarchitectures occurring in the wing scales of several Lepidoptera species were investigated by controlled cooling (from 23° C, room temperature to -5 to -10° C) combined with in situ measurements of changes in the reflectance spectra. It was determined that all photonic nanoarchitectures giving a reflectance maximum in the visible range and having an open nanostructure exhibited alteration of the position of the reflectance maximum associated with the photonic nanoarchitectures. The photonic nanoarchitectures with a closed structure exhibited little to no alteration in color. Similarly, control specimens colored by pigments did not exhibit a color change under the same conditions. Hence, this method can be used to identify species with open photonic nanoarchitectures in their scales. For certain species, an almost complete disappearance of the reflectance maximum was found. All specimens recovered their original colors following warming and drying. Cooling experiments using thin copper wires demonstrated that color alterations could be limited to a width of a millimeter or less. Dried museum specimens did not exhibit color changes when cooled in the absence of a heat sink due to the low heat capacity of the wings

    An extension to the Navier-Stokes equations to incorporate gas molecular collisions with boundaries

    Get PDF
    We investigate a model for micro-gas-flows consisting of the Navier-Stokes equations extended to include a description of molecular collisions with solid boundaries, together with first and second order velocity slip boundary conditions. By considering molecular collisions affected by boundaries in gas flows we capture some of the near-wall affects that the conventional Navier-Stokes equations with a linear stress/strain-rate relationship are unable to describe. Our model is expressed through a geometry-dependent mean-free-path yielding a new viscosity expression, which makes the stress/strain-rate constitutive relationship non-linear. Test cases consisting of Couette and Poiseuille flows are solved using these extended Navier-Stokes equations, and we compare the resulting velocity profiles with conventional Navier-Stokes solutions and those from the BGK kinetic model. The Poiseuille mass flow-rate results are compared with results from the BGK-model and experimental data, for various degrees of rarefaction. We assess the range of applicability of our model and show that it can extend the applicability of conventional fluid dynamic techniques into the early continuum-transition regime. We also discuss the limitations of our model due to its various physical assumptions, and we outline ideas for further development

    The cientificWorldJOURNAL Research Article Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Get PDF
    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [Nbromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated
    corecore