2,123 research outputs found

    Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density

    Get PDF
    We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multi thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multiple thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.Comment: 32 pages, 14 figures (typo etc. corrected

    Diffusion and activation of n-type dopants in germanium

    Full text link
    The diffusion and activation of nn-type impurities (P and As) implanted into pp-type Ge(100) substrates were examined under various dose and annealing conditions. The secondary ion mass spectrometry profiles of chemical concentrations indicated the existence of a sufficiently high number of impurities with increasing implanted doses. However, spreading resistance probe profiles of electrical concentrations showed electrical concentration saturation in spite of increasing doses and indicated poor activation of As relative to P in Ge. The relationships between the chemical and electrical concentrations of P in Ge and Si were calculated, taking into account the effect of incomplete ionization. The results indicated that the activation of P was almost the same in Ge and Si. The activation ratios obtained experimentally were similar to the calculated values, implying insufficient degeneration of Ge. The profiles of P in Ge substrates with and without damage generated by Ge ion implantation were compared, and it was clarified that the damage that may compensate the activated nn-type dopants has no relationship with the activation of P in Ge.Comment: 6 pages, 4 figure

    Constant-time Bilateral Filter using Spectral Decomposition

    Get PDF
    This paper presents an efficient constant-time bilateral filter where constant-time means that computational complexity is independent of filter window size. Many state-of-the-art constant-time methods approximate the original bilateral filter by an appropriate combination of a series of convolutions. It is important for this framework to optimize the performance tradeoff between approximate accuracy and the number of convolutions. The proposed method achieves the optimal performance tradeoff in a least-squares manner by using spectral decomposition under the assumption that images consist of discrete intensities such as 8-bit images. This approach is essentially applicable to arbitrary range kernel. Experiments show that the proposed method outperforms state-of-the-art methods in terms of both computational complexity and approximate accuracy

    Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    Get PDF
    We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L_bol = 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the protostellar core. We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute signifi- cantly to its near-IR continuum veiling. Its projected rotation velocity v sin i = 50 km / s is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 R_*. It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2 L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as separate files). AASTeX LaTex macros version 5.0. To be published in The Astronomical Journal (tentatively Oct 2002

    General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions

    Get PDF
    The solutions of the Einstein-Maxwell-Chern-Simons theory are studied in (1+2) dimensions with the self-duality condition imposed on the Maxwell field. We give a closed form of the general solution which is determined by a single function having the physical meaning of the quasilocal angular momentum of the solution. This function completely determines the geometry of spacetime, also providing the direct computation of the conserved total mass and angular momentum of the configurations.Comment: 3 pages, REVTEX file, no figure

    Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells

    Get PDF
    HIV-1 is restricted for infection of primary quiescent T-cells. After viral entry, reverse transcription is initiated but is not completed. Various hypotheses have been proposed for this cellular restriction including insufficient nucleotide pools and cellular factors, but none have been confirmed as the primary mechanism for restriction. A recent study by Chiu et al. implicates APOBEC3G, an anti-retroviral cytidine deaminase, as the cellular restriction factor. Here, we attempted to confirm these findings using the same strategy as reported by Chiu et al. of siRNA targeting knock-down of APOBEC3G expression. In contrast to the published study, our results do not support a role for APOBEC3G in restriction of HIV-1 in quiescent CD4+ T-cells. In our study, we tested the same siRNA as reported by Chiu et al. as well as two additional siRNAs targeting APOBEC3G, one of which showed 2-fold greater knock-down of APOBEC3G mRNA. However, none of the three siRNAs tested had a discernable effect on enhancing infection by HIV-1 in quiescent CD4+ T-cells. Therefore, we conclude that the primary mechanism of HIV-1 restriction in quiescent CD4+ T-cells remains to be elucidated
    • 

    corecore