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ABSTRACT

This paper presents an efficient constant-time bilateral filter where

constant-time means that computational complexity is independent

of filter window size. Many state-of-the-art constant-time methods

approximate the original bilateral filter by an appropriate combina-

tion of a series of convolutions. It is important for this framework

to optimize the performance tradeoff between approximate accuracy

and the number of convolutions. The proposed method achieves

the optimal performance tradeoff in a least-squares manner by using

spectral decomposition under the assumption that images consist of

discrete intensities such as 8-bit images. This approach is essentially

applicable to arbitrary range kernel. Experiments show that the pro-

posed method outperforms state-of-the-art methods in terms of both

computational complexity and approximate accuracy.

Index Terms— Image filtering, Constant-time bilateral filter,

Spectral decomposition

1. INTRODUCTION

The bilateral filter (BF) [1–3] has played a fundamental role as an

edge-preserving smoothing tool in image processing, computer vi-

sion and computer graphics, (e.g. for denoising [4–6], high-dynamic

range imaging [7–9] and stereo vision [10, 11]; see [12] for more

applications). The BF enables us to smooth an image while pre-

serving edges and textures by using filter weights determined from

both spatial kernel (pixel position) and range kernel (pixel intensity).

Following the original work, many improved methods have been ac-

tively proposed to further enhance smoothing quality [4, 5] and to

reduce computational complexity [7, 8, 13–21]. A major drawback

of the original BF is the computational complexity depending on

its filter window size. This causes unacceptable running time in a

recent trend toward high-resolutional and volume image processing

because they tend to require large filter window size. We therefore

focus on constant-time (O(1)) BF — an approximate BF that can

run in O(1) time per pixel with a slight sacrifice of accuracy.

Many methods of O(1) BF share the following framework.

Firstly, the original BF is approximated by an appropriate combi-

nation of a series of convolutions, (e.g. by splatting/slicing tech-

nique [8,15,16], histogram technique [14] or range kernel decompo-

sition [20, 21]). Secondly, each convolution is operated by an O(1)
method, (e.g. using integral image [22, 23], recursive filter [24–26]

or short-time spectra [27, 28]). Under this framework, O(1) BF

involves a performance tradeoff between computational complex-

ity and approximate accuracy. The former can be quantified as the

number of the convolutions; the latter indicates how exactly it emu-

lates the output images of the original BF. Naturally, this observation

prompts the question about optimality of the performance tradeoff.

Sugimoto and Kamata [21] attempted to answer this question

from a viewpoint of compressibility. Based on their discussion,

they developed an efficient O(1) BF called compressive BF, which

can achieve a nearly-optimal performance tradeoff in a least-squares

manner. However, this method has the following limitations. Firstly,

its performance is nearly-optimal only when the number of con-

volutions are sufficiently-large due to assumptions used for error

estimation. Secondly, it focuses only on Gaussian range kernel,

not on arbitrary range kernels. Regarding other existing O(1)
BFs, although arbitrary range kernels are supported in some recent

work [8,14–16,29,30], none of them have explicitly addressed opti-

mality from a theoretical viewpoint.

This paper presents an O(1) BF that provides the optimal perfor-

mance tradeoff in a least-squares manner. We optimize range kernel

decomposition by simply employing spectral decomposition under

the assumption that images consist of equally-spaced discrete inten-

sities. This assumption is trivial for most practical applications since

digital images general satisfy this assumption within an 8-bit rep-

resentational space. The proposed method eliminates the aforemen-

tioned limitations because spectral decomposition guarantees the op-

timal solution in a least-squares manner and is essentially applicable

to arbitrary range kernels. Moreover, we discuss how to reduce the

computational complexity of the spectral decomposition, which ex-

ploits mathematical properties of real symmetric Toeplitz matrices.

Experiments validate that our method outperforms state-of-the-art

methods in terms of performance tradeoff.

2. EXISTING WORK AND REMAINING PROBLEMS

This section first summarizes the original BF [1–3] and relevant

cross/joint extensions [4, 5]. We then show a general framework of

the state-of-the-art O(1) BFs [15, 16, 18–21] from a viewpoint of

range kernel decomposition and discuss their remaining problems.

2.1. Bilateral Filter

Consider smoothing a D-dimensional grayscale image on spatial do-

main Ω ⊂ Z
D . The BF smooths a target image f : Ω → R to yield

its smoothed image g : Ω → R, by using a guide image f⋆ : Ω → R

if needed. The weights around a pixel position p ∈ Ω are determined

from the positions/intensities of its neighboring pixels N (p) ⊂ Ω.

Definition 2.1.1. (Bilateral filter [1–5])

g(p) :=

∑

q∈N (p) ws(p, q)wr(f⋆(p), f⋆(q)) f(q)
∑

q∈N (p) ws(p, q)wr(f⋆(p), f⋆(q))
, (1)

where ws : ZD ×Z
D → R is spatial kernel and wr : R×R → R is

range kernel. This definition forms the original BF [1–3] if f⋆ = f

and a cross/joint extension [4, 5] otherwise.

The denominator normalizes the weight so that they amount to unity.

The spatial and range kernels are defined according to the intended

use with one of the most common choices being the Gaussian kernel.
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Definition 2.1.2. (Gaussian spatial/range kernel)

ws(p, q) := e
−

‖q−p‖2

2σ2
s , wr(t, s) := e

−
(t−s)2

2σ2
r , (2)

where σs, σr ∈ R are the scale of Gaussian spatial and range ker-

nels, respectively, and ‖·‖ denotes the ℓ2-norm of a vector.

The BF has the typical problem that the computational complexity

depends on the filter window size |N (p)|. This causes unacceptable

running time in a recent trend towards high-resolution or volume

image processing that requires large filter window sizes.

2.2. O(1) Bilateral Filters

In order to address the problem of large filter window size, many

O(1) BFs have been proposed in the past [7, 13–21]. They have at-

tempted to approximate the original BF as accurately as possible.

We describe a general framework of O(1) BFs from a unified per-

spective of range kernel decomposition. Consider decomposing a

range kernel by the separable form

wr(t, s) =

∞
∑

k=0

φk(t)ψk(s), (3)

where t, s ∈ R indicate intensity variables. Substituting (3) for (1),

g(p) =

∑∞

k=0 ψk(f⋆(p)) Φk(p)
∑∞

k=0 ψk(f⋆(p)) Φ̄k(p)
, (4)

where Φk(·), Φ̄k(·) are called component images, defined by

Φk(p) =
∑

q∈N (p)

ws(p, q)φk(f⋆(q)) f(q), (5)

Φ̄k(p) =
∑

q∈N (p)

ws(p, q)φk(f⋆(q)). (6)

Obviously, (5) and (6) indicate convolutions to transformed image

φk(f⋆(q)) f(q) and φk(f⋆(q)), respectively. These spatial filters

can be replaced to an adequate O(1) method such as [22–28]. After

precomputing the component images, (4) is also computable in O(1)
per pixel if we can well-approximate (3) by a few K terms. It is

in essence a matter for this framework to find an efficient way to

decompose (3).

We particularize representative examples of the above framework.

The splatting/slicing techniques [15, 16] represent a range kernel

as wr(t, s) =
∫

R
wr(t, r)δ(s − r)dr and then replace the inte-

gral to a summation by aggressively quantizing its integral range

where δ(·) is the Dirac delta function. This result can be identi-

fied with (3). Chaudhury [19, 20] discussed the property of (3) as

shiftable kernel. For example, Gaussian range kernel can be well

approximated by a linear combination of a few cosine terms. This

approximation forms (3) since each term can be decomposed into

cos(t − s) = cos(t) cos(s) + sin(t) sin(s). Sugimoto and Ka-

mata [21] showed how to approximate Gaussian range kernel by

fewer cosine terms, which are derived from Fourier expansion and

optimization of its period length. They also demonstrated empiri-

cally that this method provided a nearly-optimal performance trade-

off in a least-squares manner if K is sufficiently-large.

2.3. Remaining Problems

We point out that [21] has the following limitations. First, the perfor-

mance tradeoff is nearly-optimal, not optimal, due to some assump-

tions introduced for error estimation of range kernel. For example,

the performance tradeoff closely approaches the optimal one if K

is sufficiently-large; by contrast, the accuracy declines significantly

otherwise. Second, this method covers Gaussian range kernel only.

It should be discussed for arbitrary range kernel because range kernel

relates to the noise model of image intensities. Hence, it is impor-

tant to develop an O(1) BF that provides the optimal performance

tradeoff for arbitrary range kernel over a wide range of parameters.

3. PROPOSED METHOD

This section presents an O(1) BF that provides an optimal perfor-

mance tradeoff in a least-squares manner by spectral decomposition.

This can be achieved by exploiting a typical feature of digital images

and is essentially applied to arbitrary range kernel. Due to space lim-

itation, this paper only shows the case of Gaussian range kernel.

3.1. Spectral Decomposition of Range Kernel

First of all, we assume that the guide image f⋆ consists of M -step

discrete intensities Z = {0, . . . ,M − 1}, i.e., f⋆ : Ω → Z and

wr : Z × Z → R. This assumption is natural in most real applica-

tions since they generally process 8-bit images (M = 256). Under

this assumption, all the possible values of the range kernel can be

arranged in the matrix

W = {wr(t, s)}
M−1
t,s=0 = [w0, . . . ,wM−1] ∈ R

M×M
,

which the column vectors ws ∈ R
M are called shifted range kernels.

Note that W is a real symmetric Toeplitz matrix. We produce least-

squares approximations by applying low-rank matrix factorization to

W . Its spectral decomposition can be described as

W =

M−1
∑

k=0

λkuku
⊤
k , (7)

where λk ∈ R are eigenvalues, uk ∈ R
M are their corresponding

eigenvectors and we assume |λ0| ≥ · · · ≥ |λM−1| and ‖uk‖2 = 1.

An element of W is computed by

wr(t, s) = W [t, s] =

M−1
∑

k=0

λk uk[t]uk[s], (8)

where [·] denotes an index operator for accessing to an element

of a vector or a matrix. Obviously, the spectral decomposition of

(8) corresponds to the range kernel decomposition of (3). Sub-

sequently, wr(t, s) can be well approximated by truncating (8) at

index K. We represent the K-truncated range kernel matrix as

ŴK =
∑K−1

k=0 λkuku
⊤
k , which is the optimal solution in a least-

squares manner.

Figure 1 illustrates a specific example of the above approach with

Gaussian range kernel. Figure 1(a) plots some of shifted Gaussian

range kernels. The matrix W can be understood as a data matrix

that consists of all the shift range kernels ws. Figure 1(b) shows

the eigenvectors uk. This result reveals a mathematical property of

symmetric Toeplitz matrices [31–34]. Let J denote the exchange

matrix, which has 1 on the second diagonal and 0 otherwise. We say

a vector v is symmetric if v = Jv or skew-symmetric if v = −Jv.
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Fig. 1. A specific example of Gaussian range kernels where M = 256 and σr = 20.

The eigenvectors uk are symmetric if k is even and skew-symmetric

otherwise. This is Figure 1(c) plots a contour map of K: curve

relations between range scale σr and the approximate error of the

range kernel for each K. The approximate error is quantified as a

normalized energy loss by

E
2(K) =

∥

∥

∥
W − ŴK

∥

∥

∥

2

F

‖W ‖2F
=

∑M−1
k=K

λ2
k

∑M−1
k=0 λ2

k

, (9)

where ‖·‖F indicates the Frobenius norm of a matrix. The curves

clarify that the larger K reconstructs the more exact range kernel

and they are well approximated even if K is small. This contour

map enables us to determine K from a given tolerance τ , (e.g. the

minimum K that satisfies E(K) ≤ τ ). As a result, our method can

well approximate the BF by using a few iterations of convolutions.

3.2. Acceleration Techniques

It is important for our method to perform the aforementioned spec-

tral decomposition in negligible running time. We first introduce

an acceleration technique that exploits a mathematical property of

the real symmetric Toeplitz matrix W . It has been well studied to

efficiently solve eigenvalue problems of symmetric Toeplitz matri-

ces [31–34]. We mention the approach of [31] for the case of even

M . As Fig. 1(b) shows, the eigenvectors uk are symmetric if k is

even or skew-symmetric otherwise. From this fact, the same eigen-

vectors can be obtained by solving two eigenvalue problems of half-

sized matrices. This technique drastically reduces the computational

complexity of spectral decomposition. Hence, we compute only the

first K eigenvalues/eigenvectors by combining the power iteration

and this matrix decomposition approach.

Another effective technique enables us to eliminate one convolu-

tion in (6). If we assume φk(t) = µ, i.e., a constant, (6) can be

operated as a multiplication of µ and the total value of spatial ker-

nel without a convolution. This assumption holds in the compressive

BF [21] since its first cosine term is a constant. By contrast, it does

not in our method since any uk is not constant in general. In order

to utilize this benefit, we redefine W = {wr(t, s)− µ}M−1
t,s=0 and

rewrite (8) as

wr(t, s) = W [t, s] = µ+

M−1
∑

k=0

λk uk[t]uk[s]. (10)

We suggest µ = 1
M2

∑M−1
t,s=0 wr(t, s) to minimize ‖W ‖F. Sub-

sequently, spectral decomposition is applied to the new W . This

technique enhances the approximate accuracy without operating a

convolution.

3.3. Algorithm Procedure and Advantages

Algorithm 1 The proposed O(1) bilateral filter

1: ⊲ f : target image, f⋆: guide image

2: ⊲ σs: spatial scale, σr: range scale, K: truncation index

3: function PROPOSEDMETHOD(f ,f⋆, σs, σr,K)

4: ⊲ Precomputing phase

5: µ = 1
M2

∑M−1
s=0

∑M−1
t=0 wr(t, s)

6: W ← {wr(t, s)− µ}M−1
t,s=0

7: {λk,uk}
K−1
k=0 ← TRUNCATEDEVD(W ,K)

8: ⊲ Filtering phase

9: b̄ ← CONVOLUTION(σs, µ1) ⊲ Replaced to multiplication

10: b ← CONVOLUTION(σs, µf)
11: for k ← 0 to K − 1 do

12: for ∀p do

13: x[p] ← uk[f⋆[p]]

14: Φ̄ ← CONVOLUTION(σs,x)
15: Φ ← CONVOLUTION(σs,x⊗ f)
16: b̄ ← b̄+ λkx⊗ Φ̄

17: b ← b+ λkx⊗Φ

18: return b⊘ b̄

Algorithm 1 describes an algorithm procedure of our method

where images are represented as vector forms for simplicity. The

operators ⊗ and ⊘ denote element-wise multiplication and division,

respectively. The function CONVOLUTION(·) requires to be ade-

quately replaced to an arbitrary O(1) filter for O(1) BF. Let N be

the number of convolutions. Our method has the computational com-

plexity dominated by N = 2K +1, where note that the convolution

in line 9 is actually replaced to a multiplication, as mentioned above.

Since the precomputing phase depends only on σr and K, not on

image content, it is sufficient to run once when the parameters are

unchanged, (e.g. for video sequence).

We clarify the major advantages over the existing state-of-the-art

methods [20, 21]. Firstly, our method can cover arbitrary range ker-

nels; by contrast, the existing methods mainly discussed Gaussian

range kernel only. Secondly, our method provides optimal perfor-

mance tradeoff in a least-squares manner under any parameter set-

ting. However, [21] imposes a limitation on parameter range, (e.g.

K has to be sufficiently-large and σr ≤ 6M ). Finally, we can ad-

just N more flexibly than the existing methods. In existing meth-

ods [20, 21], N required has a fixed granularity of step-wise scal-

ing by 4K. By contrast, our method offers more flexibility with a

granularity of 2K step-wise scaling. Consequently, our method is

����



(a) Gaussian spatial kernel (b) Box spatial kernel

Fig. 2. PSNR comparison using Kodak 24 Images where M = 256, σs = 2 and σr = 40.

Image “Kodim5” (a) Input (b) Original BF (c) Compressive BF (d) Ours

Fig. 3. Zoomed images for visual error assessment where σs = 2, σr = 20 and N = 13. The PSNRs are (c) 41.62 [dB] and (d) 41.90 [dB].

applicable to a wider range of applications than prior state-of-the-art

methods.

4. EXPERIMENTS AND DISCUSSION

This section evaluates the performance of our method through sev-

eral experiments. The comparators are Yang et al. [16], Chaud-

hury [20], the compressive BF [21] and our method. We elimi-

nated any content-dependent techniques such as the MAXFILTER

technique in [20] to evaluate their worst-case performance. Their

implementations are all written in C++ for a fair comparison. All the

methods do not explicitly use parallel processing architecture such

as vectorized/multicore computation. Test environment mounts on

an Intel Core i5 2.67GHz CPU with main memory 8GB. Test set is

the Kodak Photo CD, which contains 24 RGB images with the size

of 512×768 or 768×512. Each channel is 8-bits (M = 256) and

independently filtered in this experiments.

Figure 2 shows the relationship between N required and Peak

Signal-to-Noise Ratio (PSNR) [dB] averaged over all the 24 test

images. The PSNR is computed between resulting images of each

method and the original BF as exact results. Fig. 2(a) reveals that our

method significantly outperforms the Chaudhury method and shows

slightly higher PSNR than the compressive BF where all the methods

use the O(1) algorithm of [27, 28] for Gaussian convolution. Using

µ in our method is effective when range kernel is roughly approx-

imated. Note that the Chaudhury method and the compressive BF

focus only on Gaussian range kernel but our method is essentially ap-

plicable to arbitrary range kernels. In Fig. 2(b), our method achieves

higher PSNR than the Yang method when N < 6 or 10 < N . This

tendency is observed under any values of σr .

Next, we visually assess the output quality of the original BF,

the compressive BF and our method. Figure 3 shows their actual

output images zoomed to facilitate visual assessment where σs = 2,

σr = 20 and N = 13. Our method suppresses spike noise on the

edge of the white wing as compared with the compressive BF.

The running time is another important criterion. In the most com-

mon case of M = 256, the proposed spectral decomposition spe-

cialized in symmetric Toeplitz matrices took approximately 2 [ms].

On the other hand, naive power iteration took 30 [ms]. Total running

time is dominated by a series of convolutions and each Gaussian con-

volution takes takes 19 [ms/Mpixels] per iteration in [28]. Hence, the

precomputing time is trivial for most applications.

5. CONCLUSIONS

This paper presented an efficient O(1) BF that provides an optimal

performance tradeoff between approximate accuracy and computa-

tional complexity in a least-squares manner. The optimality was

achieved by spectral decomposition of a matrix generated from range

kernel. Our method assumed that images have discrete intensities

such as typical 8-bit images but this is natural for most applications.

Even if images have continuous tone, most practical cases could be

well approximated by a discrete tone with sufficiently-many steps.

Future work will thoroughly examine various range kernels such as

exponential range kernel.
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