52 research outputs found

    Multidetector computed tomography findings of an asymptomatic levoatrial cardinal vein with an interatrial course

    Get PDF
    A 57-year-old female patient with a family history of coronary artery diseaseadmitted to our hospital for the coronary check-up. A coronary angiographywas performed with ECG-gated 128 slice dual source computed tomography.Multidetector computed tomography (MDCT) showed, in addition to the normalcoronary arteries, a persistent levoatrial cardinal vein (LCV) draining into vena cavasuperior. ECG-gated cardiac MDCT is a useful tool showing the origin, course, anddrainage site of LCV

    Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface

    Full text link
    We report laser emission from single, stationary, Rhodamine B-doped glycerol/water microdroplets located on a superhydrophobic surface. In the experiments, a pulsed, frequency-doubled Nd:YAG laser operating at 532 nm was used as the excitation source. The microdroplets ranged in diameter from a few to 20 um. Lasing was achieved in the red-shifted portion of the dye emission spectrum with threshold fluences as low as 750 J/cm2. Photobleaching was observed when the microdroplets were pumped above threshold. In certain cases, multimode lasing was also observed and attributed to the simultaneous lasing of two modes belonging to different sets of whispering gallery modes.Comment: to appear in Optics Communication

    Keynote Lecture – The Interplay of Multiple Hazards and Urban Development: The context of Istanbul

    Get PDF
    Tomorrow’s Cities is the UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) Urban Disaster Risk Hub – an interdisciplinary research hub with the aim to catalyse a transition from crisis management to multi-hazard risk-informed and inclusive planning in four cities in low-and-middle income countries. Istanbul in Turkey is one of the four cities investigated. It is one of the largest urban agglomerations in Europe where more than 15 million people reside in more than 1 million buildings. Considering that the population was 4.75 million in 1980, Istanbul’s urban sprawl was inevitable. Due to an imbalance between the population growth and housing supply, Istanbul’s urbanization was shaped by illegal construction processes producing the gecekondus in almost every part of the city (Gencer and Mentese, 2016). Unplanned urban expansion was so rapid that the urban master plan of 1980, which set the limits and strategies for urban development, became completely invalid by 1989 (Tapan, 1998). This situation led to the development of a new urban master plan in 1994 that included geoscientific analysis, and which highlighted the possibility of losses due to an earthquake on the segments of the North Anatolian Fault in the Marmara Sea. Uncontrolled and unplanned development continued in Istanbul until 1999 when two major earthquakes hit the region causing at least 18.000 deaths and $16 billion economic loss. These events changed the authorities’ perspective to earthquake risk and its mitigation. As a result, the 1998 earthquake resistant design code (published one year before the 1999 earthquakes) was widely embraced and implemented. Furthermore, several urban transformation projects have taken place in the last 20 years for reducing disaster risk. These have had varied success, with research to date showing that areas selected for urban transformation were often chosen on the basis of land value rather than hazard risk, and that a pro-poor approach is missing. Despite these efforts, Istanbul’s earthquake risk remains high. Furthermore, recent urban development plans are seeing the city expand into undeveloped lands to the west, increasing exposure to new hazards, namely flash flooding and landslides. The combined impact of these hazards is not evenly distributed, and the associated risks are heightened by poor infrastructural resilience and social vulnerabilities. Therefore, it is crucial to integrate different types of hazards and risks into the urban development context for future scenarios, so that a physically and socio-economically safer development that prioritizes the wellbeing of local communities can be facilitated. This presentation summarises the research conducted in Istanbul over the first 18 months of the Tomorrow’s Cities Project by a consortium of Turkish and UK researchers. This research spans the better characterisation of earthquake and landslide hazards, development of analysis methods for predicting the response of case study buildings to multiple hazards and a Bayesian network based approach for assessing road infrastructure resilience under multiple hazard scenarios. Furthermore, plans for building a Resilient Urban Development Decision Support Environment (RUD-DSE) for communicating the relevance of this research on future urban planning is described

    An integrated earthquake vulnerability assessment framework for urban areas

    No full text
    In this paper, an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate for the decision-makers in prioritization their limited resources for risk reduction in the administrative units from which they are responsible for. The methodology integrates socio-economical, structural, coastal, ground condition, vulnerabilities (fragilities), as well as accessibility to critical services. The proposed methodology is implemented for Eskisehir, which is one of the metropolitans of Turkey. In the implementation of the proposed framework, geographic information system (GIS) is used. While the overall vulnerabilities obtained for neighborhoods are mapped in GIS, the overall vulnerabilities obtained for buildings are visualized in 3D city model. The main reason behind using different mapping and visualization tools for vulnerabilities is to provide better ways for communicating with decision-makers. The implementation of the proposed vulnerability assessment methodology indicates that an urban area may have different vulnerability patterns in terms of structural, socio-economical, and accessibility to critical services. When such patterns are investigated, effective vulnerability reduction policies can be designed by the decision-makers. The proposed methodology well serves for this purpose

    Disaster Response in Turkey : Conditions Promoting Cross-Sectoral Collaboration and Implications for Effectiveness

    No full text
    Local and civil society can play decisive roles in disaster response. Yet, the disaster management literature is unclear regarding the conditions that enable cross-sectoral collaboration. Using a collaborative governance framework and 44 semi-structured interviews, this study investigates how trust, pre-existing relations, interdependence, knowledge, and resources affect cross-sectoral collaboration during disaster response in Turkey. The results illustrate how these factors interact with system context factors, like political compatibility, to facilitate or hinder cross-sectoral collaboration. The study concludes that cross-sectoral collaboration is no panacea for successful disaster response but empirical examples suggest that cross-sectoral collaboration can contribute to reducing suboptimal disaster response
    corecore