39 research outputs found

    Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB

    No full text
    Abstract Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk–Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF–driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA–mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK–CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.</jats:p

    The cytokine language of monocytes and macrophages in systemic sclerosis

    Get PDF
    Many important observations suggest monocyte/macrophage involvement in systemic sclerosis (SSc). A high concentration of immune mediators, such as IL-6, IL-10 and IL-13, the infiltration of mononuclear cells in affected organs and the production of autoantibodies suggest that immune system dysfunction drives SSc pathogenesis. The recently reported study by Higashi-Kuwata and colleagues, in light of other observations, provides further insight into activation of macrophages/monocytes in SSc patients, suggesting that these cells undergo distinct activation pathways. These results emphasize the need for more detailed analyses of the several markers now defined in SSc peripheral blood mononuclear cells and tissues to better define the cytokine language speaking to monocytes/macrophages in SSc that promote vascular injury and tissue fibrosis

    Technical Variability Is Greater than Biological Variability in a Microarray Experiment but Both Are Outweighed by Changes Induced by Stimulation

    Get PDF
    INTRODUCTION: A central issue in the design of microarray-based analysis of global gene expression is that variability resulting from experimental processes may obscure changes resulting from the effect being investigated. This study quantified the variability in gene expression at each level of a typical in vitro stimulation experiment using human peripheral blood mononuclear cells (PBMC). The primary objective was to determine the magnitude of biological and technical variability relative to the effect being investigated, namely gene expression changes resulting from stimulation with lipopolysaccharide (LPS). METHODS AND RESULTS: Human PBMC were stimulated in vitro with LPS, with replication at 5 levels: 5 subjects each on 2 separate days with technical replication of LPS stimulation, amplification and hybridisation. RNA from samples stimulated with LPS and unstimulated samples were hybridised against common reference RNA on oligonucleotide microarrays. There was a closer correlation in gene expression between replicate hybridisations (0.86-0.93) than between different subjects (0.66-0.78). Deconstruction of the variability at each level of the experimental process showed that technical variability (standard deviation (SD) 0.16) was greater than biological variability (SD 0.06), although both were low (SD<0.1 for all individual components). There was variability in gene expression both at baseline and after stimulation with LPS and proportion of cell subsets in PBMC was likely partly responsible for this. However, gene expression changes after stimulation with LPS were much greater than the variability from any source, either individually or combined. CONCLUSIONS: Variability in gene expression was very low and likely to improve further as technical advances are made. The finding that stimulation with LPS has a markedly greater effect on gene expression than the degree of variability provides confidence that microarray-based studies can be used to detect changes in gene expression of biological interest in infectious diseases

    An Accessory to the ‘Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses

    Get PDF
    Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNβ. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as ‘carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions

    Genome-Wide Screen for Mycobacterium tuberculosis Genes That Regulate Host Immunity

    Get PDF
    In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain

    Ir-LBP, an Ixodes ricinus Tick Salivary LTB4-Binding Lipocalin, Interferes with Host Neutrophil Function

    Get PDF
    BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM), similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-beta Production

    No full text
    Item does not contain fulltextPlasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-beta, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-beta and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-beta expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-beta production by these cells

    Selective expression of the MAPK phosphatase Dusp9/MKP-4 in mouse plasmacytoid dendritic cells and regulation of IFN-β production

    No full text
    \u3cp\u3ePlasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-β, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-β and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-β expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-β production by these cells.\u3c/p\u3
    corecore