285 research outputs found
Our Administrative System of Criminal Justice
To commemorate our founding in 1914, the Board of Editors has selected six influential pieces published by the Law Review over the past 100 years and will republish one piece in each issue.
The fourth piece selected by the Board is Our Administrative System of Criminal Justice, an article written by Gerard E. Lynch that is among the most cited works in the Law Review’s history. This article illustrates how the practice of plea bargaining blurs the boundaries between adversarial and inquisitorial criminal justice systems.
Judge Lynch now sits on the Second Circuit having eventually succeeded the late Judge Joseph M. McLaughlin, who also is honored in the pages of this book for the permanent mark he left on Fordham Law School and the Law Review. We think it is fitting that the Law Review feature two of the many contributions that judges of the Second Circuit have made to legal education and scholarship in this issue
Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree
We present algorithms for distributed verification and silent-stabilization
of a DFS(Depth First Search) spanning tree of a connected network. Computing
and maintaining such a DFS tree is an important task, e.g., for constructing
efficient routing schemes. Our algorithm improves upon previous work in various
ways. Comparable previous work has space and time complexities of bits per node and respectively, where is the highest
degree of a node, is the number of nodes and is the diameter of the
network. In contrast, our algorithm has a space complexity of bits
per node, which is optimal for silent-stabilizing spanning trees and runs in
time. In addition, our solution is modular since it utilizes the
distributed verification algorithm as an independent subtask of the overall
solution. It is possible to use the verification algorithm as a stand alone
task or as a subtask in another algorithm. To demonstrate the simplicity of
constructing efficient DFS algorithms using the modular approach, We also
present a (non-sielnt) self-stabilizing DFS token circulation algorithm for
general networks based on our silent-stabilizing DFS tree. The complexities of
this token circulation algorithm are comparable to the known ones
The potential of decision support systems to improve risk assessment for pollen beetle management in winter oilseed rape
BACKGROUNDThe reliance on and extensive use of pyrethroid insecticides have led to pyrethroid resistance in pollen beetle (Meligethes aeneus). Widespread adoption of best practice in pollen beetle management is therefore needed. Decision support systems (DSSs) that identify the risk period(s) for pest migration can help to target monitoring and control efforts, but they must be accurate and labour efficient to gain the support of growers. Weather data and the phenology of pollen beetles in 44 winter oilseed rape crops across England over 4 years were used to compare the performance of two risk management tools: the DSS proPlant expert, which predicts migration risk according to a phenological model and local weather data, and rule-based advice', which depends on crop growth stage and a temperature threshold. RESULTSBoth risk management tools were effective in prompting monitoring that would detect breaches of various control thresholds. However, the DSS more accurately predicted migration start and advised significantly fewer days of migration risk, consultation days and monitoring than did rule-based advice. CONCLUSIONThe proPlant expert DSS reliably models pollen beetle phenology. Use of such a DSS can focus monitoring effort to when it is most needed, facilitate the practical use of thresholds and help to prevent unnecessary insecticide applications and the development of insecticide resistance. (c) 2015 Rothamsted Research Ltd. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry
Macrophage Inhibitory Cytokine 1 (MIC-1/GDF15) Decreases Food Intake, Body Weight and Improves Glucose Tolerance in Mice on Normal & Obesogenic Diets
Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis
Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems
In many wireless networks, there is no fixed physical backbone nor
centralized network management. The nodes of such a network have to
self-organize in order to maintain a virtual backbone used to route messages.
Moreover, any node of the network can be a priori at the origin of a malicious
attack. Thus, in one hand the backbone must be fault-tolerant and in other hand
it can be useful to monitor all network communications to identify an attack as
soon as possible. We are interested in the minimum \emph{Connected Vertex
Cover} problem, a generalization of the classical minimum Vertex Cover problem,
which allows to obtain a connected backbone. Recently, Delbot et
al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant
approximation ratio of for this problem. In this paper, we propose a
distributed and self-stabilizing version of their algorithm with the same
approximation guarantee. To the best knowledge of the authors, it is the first
distributed and fault-tolerant algorithm for this problem. The approach
followed to solve the considered problem is based on the construction of a
connected minimal clique partition. Therefore, we also design the first
distributed self-stabilizing algorithm for this problem, which is of
independent interest
Advances in automatic identifcation of flying insects using optical sensors and machine learning
Worldwide, farmers use insecticides to prevent crop damage caused by insect pests, while they also rely on insect pollinators to enhance crop yield and other insect as natural enemies of pests. In order to target pesticides to pests only, farmers must know exactly where and when pests and beneficial insects are present in the field. A promising solution to this problem could be optical sensors combined with machine learning. We obtained around 10,000 records of flying insects found in oilseed rape (Brassica napus) crops, using an optical remote sensor and evaluated three different classification methods for the obtained signals, reaching over 80% accuracy. We demonstrate that it is possible
to classify insects in fight, making it possible to optimize the application of insecticides in space and time. This will enable a technological leap in precision agriculture, where focus on prudent and environmentally-sensitive use of pesticides is a top priority
TGF-b Superfamily Cytokine MIC-1/GDF15 Is a Physiological Appetite and Body Weight Regulator
The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage
Molecular and functional characterization of BDNF-overexpressing human retinal pigment epithelial cells established by sleeping beauty transposon-mediated gene transfer
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the (SB100X) transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases
Macrophage Inhibitory Cytokine 1 (MIC-1/GDF15) Decreases Food Intake, Body Weight and Improves Glucose Tolerance in Mice on Normal & Obesogenic Diets
Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis
The ERP correlates of self-knowledge in ageing
Self-knowledge is a type of personal semantic knowledge that concerns one’s self-image and personal identity. It has most often been operationalized as the summary of one’s personality traits (“I am a stubborn person”). Interestingly, recent studies have revealed that the neural correlates of self-knowledge can be dissociated from those of general semantic and episodic memory in young adults. However, studies of “dedifferentiation” or loss of distinctiveness of neural representations in ageing suggest that the neural correlates of self-knowledge might be less distinct from those of semantic and episodic memory in older adults. We investigated this question in an event-related potential (ERP) study with 28 young and 26 older adults while they categorised personality traits for their self-relevance (self-knowledge conditions), and their relevance to certain groups of people (general semantic condition). Participants then performed a recognition test for previously seen traits (episodic condition). The amplitude of the late positive component (LPC), associated with episodic recollection processes, differentiated the self-knowledge, general semantic, and episodic conditions in young adults, but not in older adults. However, in older adults, participants with higher composite episodic memory scores had more differentiated LPC amplitudes across experimental conditions. Moreover, consistent with the fact that age-related neural dedifferentiation may be material and region specific, in both age groups some differences between memory types were observed for the N400 component, associated with semantic processing. Taken together, these findings suggest that declarative memory subtypes are less distinct in ageing, but that the amount of differentiation varies with episodic memory function
- …