2,417 research outputs found

    Numerical simulation of nonoptimal dynamic equilibrium models

    Get PDF
    In this paper we present a recursive method for the computation of dynamic competitive equilibria in models with heterogeneous agents and market frictions. This method is based on a convergent operator over an expanded set of state variables. The fixed point of this operator defines the set of all Markovian equilibria. We study approximation properties of the operator as well as the convergence of the moments of simulated sample paths. We apply our numerical algorithm to two growth models, an overlapping generations economy with money, and an asset pricing model with financial frictions.Econometric models

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    Temperature dependent surface relaxations of Ag(111)

    Full text link
    The temperature dependent surface relaxation of Ag(111) is calculated by density-functional theory. At a given temperature, the equilibrium geometry is determined by minimizing the Helmholtz free energy within the quasiharmonic approximation. To this end, phonon dispersions all over the Brillouin zone are determined from density-functional perturbation theory. We find that the top-layer relaxation of Ag(111) changes from an inward contraction (-0.8 %) to an outward expansion (+6.3%) as the temperature increases from T=0 K to 1150 K, in agreement with experimental findings. Also the calculated surface phonon dispersion curves at room temperature are in good agreement with helium scattering measurements. The mechanism driving this surface expansion is analyzed.Comment: 6 pages, 7 figures, submitted to Phys. Rev. B (May 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    First-principles calculation of the thermal properties of silver

    Full text link
    The thermal properties of silver are calculated within the quasi-harmonic approximation, by using phonon dispersions from density-functional perturbation theory, and the pseudopotential plane-wave method. The resulting free energy provides predictions for the temperature dependence of various quantities such as the equilibrium lattice parameter, the bulk modulus, and the heat capacity. Our results for the thermal properties are in good agreement with available experimental data in a wide range of temperatures. As a by-product, we calculate phonon frequency and Grueneisen parameter dispersion curves which are also in good agreement with experiment.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B April 30, 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Data-driven train set crash dynamics simulation

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis GroupTraditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force–displacement curves and predicts a force–displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency

    Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal

    Get PDF
    The author would like to acknowledge the funding support of “Efficient Conversion of Coal to Electricity-Direct Coal Fuel Cell” with the grant number “RFCR-CT-2011-00004” from the Research Fund for Coal & Steel of the European commission. CJ acknowledges the Royal Society of Edinburgh for a RSE BP Hutton Prize in Energy Innovation.Direct carbon fuel cells offer the opportunity of generating energy from coal at high efficiency as an alternative to the procedure of conventional power plants. In this study, raw anthracite coal and raw bituminous coal were investigated in a hybrid direct carbon fuel cell (HDCFC), which was a combination of a solid oxide fuel cell and a molten carbonate fuel cell. Mechanical mixing was confirmed to be an efficient method of mixing coal with carbonate. The coal samples had different properties, for example, carbon content, hydrogen content, volatile matter and impurities. The results showed that the maximum power density obtained by the cell with anthracite coal was similar to that obtained by the cell with bituminous coal. It was found that the total power output from coal in HDCFCs mostly depended on the carbon content, while volatile matter, hydrogen content, moisture, etc. had an effect on the short-term durability. HDCFCs were kept operating for more than 120 h with 1.6 g coal. This study demonstrates that energy can be generated efficiently by employing anthracite and bituminous coal in hybrid direct carbon fuel cells.PostprintPeer reviewe

    The Stability of Radiatively Cooled Jets in Three Dimensions

    Get PDF
    The effect of optically thin radiative cooling on the Kelvin-Helmholtz instability of three dimensional jets is investigated via linear stability theory and nonlinear hydrodynamical simulation. Two different cooling functions are considered: radiative cooling is found to have a significant effect on the stability of the jet in each case. The wavelengths and growth rates of unstable modes in the numerical simulations are found to be in good agreement with theoretical predictions. Disruption of the jet is found to be sensitive to the precessional frequency at the origin with lower frequencies leading to more rapid disruption. Strong nonlinear effects are observed as the result of the large number of normal modes in three dimensions which provide rich mode-mode interactions. These mode-mode interactions provide new mechanisms for the formation of knots in the flows. Significant structural features found in the numerical simulations appear similar to structures observed on protostellar jets.Comment: 32 pages, 13 figures, figures included in page tota

    Structure and dynamics of Rh surfaces

    Full text link
    Lattice relaxations, surface phonon spectra, surface energies, and work functions are calculated for Rh(100) and Rh(110) surfaces using density-functional theory and the full-potential linearized augmented plane wave method. Both, the local-density approximation and the generalized gradient approximation to the exchange-correlation functional are considered. The force constants are obtained from the directly calculated atomic forces, and the temperature dependence of the surface relaxation is evaluated by minimizing the free energy of the system. The anharmonicity of the atomic vibrations is taken into account within the quasiharmonic approximation. The importance of contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    corecore