The temperature dependent surface relaxation of Ag(111) is calculated by
density-functional theory. At a given temperature, the equilibrium geometry is
determined by minimizing the Helmholtz free energy within the quasiharmonic
approximation. To this end, phonon dispersions all over the Brillouin zone are
determined from density-functional perturbation theory. We find that the
top-layer relaxation of Ag(111) changes from an inward contraction (-0.8 %) to
an outward expansion (+6.3%) as the temperature increases from T=0 K to 1150 K,
in agreement with experimental findings. Also the calculated surface phonon
dispersion curves at room temperature are in good agreement with helium
scattering measurements. The mechanism driving this surface expansion is
analyzed.Comment: 6 pages, 7 figures, submitted to Phys. Rev. B (May 1998). Other
related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm