1,112 research outputs found

    Dynamic nuclear polarization enhanced solid-state NMR studies of surface modification of gamma-alumina

    Get PDF
    Dynamic nuclear polarization (DNP) gives large (>100-fold) signal enhancements in solid-state NMR spectra via the transfer of spin polarization from unpaired electrons from radicals implanted in the sample. This means that the detailed information about local molecular environment available for bulk samples from solid-state NMR spectroscopy can now be obtained for dilute species, such as sites on the surfaces of catalysts and catalyst supports. In this paper we describe a DNP-enhanced solid-state NMR study of the widely used catalyst gamma-alumina which is often modified at the surface by the incorporation of alkaline earth oxides in order to control the availability of catalytically active penta-coordinate surface Al sites. DNP-enhanced 27Al solid-state NMR allows surface sites in gamma-alumina to be observed and their 27Al NMR parameters measured. In addition changes in the availability of different surface sites can be detected after incorporation of BaO

    Ion exchange and binding in selenium remediation materials using DNP-enhanced solid-state NMR spectroscopy

    Get PDF
    Selenate-loaded selenium water remediation materials based on polymer fibres have been investigated by dynamic nuclear polarization (DNP) enhanced solid-state NMR. For carbon-13 a significant reduction in experiment time is obtained with DNP even when compared with conventional carbon-13 NMR spectra recorded using larger samples. For the selenium remediation materials studied here this reduction allows efficient acquisition of {1H}-77Se heteronuclear correlation spectra which give information about the nature of the binding of the remediated selenate ions with the grafted side chains which provide the required ion exchange functionality

    Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study

    Get PDF
    Form resistance (Phi) is a dimensionless number expressing how much slower or faster a particle of any form sinks in a fluid medium than the sphere of equivalent volume. Form resistance factors of PVC models of phytoplankton sinking in glycerin were measured in a large aquarium (0.6 x 0.6 x 0.95 m). For cylindrical forms, a positive relationship was found between Phi and length/ width ratio. Coiling decreased Phi in filamentous forms. Form resistance of Asterionella colonies increased from single cells up to 6-celled colonies than remained nearly constant. For Fragilaria crotonensis chains, no such upper limit to Phi was observed in chains of up to 20 cells ( longer ones were not measured). The effect of symmetry on Phi was tested in 1 - 6-celled Asterionella colonies, having variable angles between the cells, and in Tetrastrum staurogeniaeforme coenobia, having different spine arrangements. In all cases, symmetric forms had considerably higher form resistance than asymmetric ones. However, for Pediastrum coenobia with symmetric/asymmetric fenestration, no difference was observed with respect to symmetry. Increasing number and length of spines on Tetrastrum coenobia substantially increased Phi. For a series of Staurastrum forms, a significant positive correlation was found between arm-length/cell-width ratio and Phi: protuberances increased form resistance. Flagellates (Rhodomonas, Gymnodinium) had a Phi 1. The highest value ( Phi = 8.1) was established for a 20-celled Fragilaria crotonensis chain. Possible origin of the so-called 'vital component' ( a factor that shows how much slower viable populations sink than morphologically similar senescent or dead ones) is discussed, as is the role of form resistance in evolution of high diversity of plankton morphologies

    How does dense phase CO2 influence the phase behaviour of block copolymers synthesised by dispersion polymerisation?

    Get PDF
    Block copolymers synthesised in supercritical CO2 dispersion undergo in situ self-assembly which can result in a range of nanostructured microparticles. However, our previous study revealed that copolymers with different block combinations possessed different microphase separated morphologies at identical block volume fractions. In this paper, we follow up those initial observations. By examining the phase behaviour of a selection of structurally diverse block copolymers, we explore the structural factors which influence the conflicting self-assembly behaviours. The composition dependence of the morphology is found to be strongly related to the CO2-philicity of the second block relative to poly(methyl methacrylate) (PMMA). Whilst PMMA-b-poly(benzyl methacrylate) (PBzMA) and PMMA-b-poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) phase behaviour follows traditional diblock copolymer phase diagrams, PMMA-b-poly(styrene) (PS) and PMMA-b-poly(4-vinyl pyridine) (P4VP), which comprise blocks with the greatest contrast in CO2-philicity, self-assemble into unexpected morphologies at several different block volume fractions. The morphology of these copolymers in the microparticulate form was found to revert to the predicted equilibrium morphology when the microparticles were re-cast as films and thermally annealed. These findings provide strong evidence that CO2 acts as a block-selective solvent during synthesis. The CO2-selectivity was exploited to fabricate various kinetically trapped non-lamellar morphologies in symmetrical PMMA-b-PS copolymers by tuning the ratio of polymer:CO2. Our data demonstrate that CO2 can be exploited as a facile process modification to control the self-assembly of block copolymers within particles

    A Hedged Monte Carlo Approach to Real Option Pricing

    Full text link
    In this work we are concerned with valuing optionalities associated to invest or to delay investment in a project when the available information provided to the manager comes from simulated data of cash flows under historical (or subjective) measure in a possibly incomplete market. Our approach is suitable also to incorporating subjective views from management or market experts and to stochastic investment costs. It is based on the Hedged Monte Carlo strategy proposed by Potters et al (2001) where options are priced simultaneously with the determination of the corresponding hedging. The approach is particularly well-suited to the evaluation of commodity related projects whereby the availability of pricing formulae is very rare, the scenario simulations are usually available only in the historical measure, and the cash flows can be highly nonlinear functions of the prices.Comment: 25 pages, 14 figure

    Debt Maturity Choices, Multi-stage Investments and Financing Constraints

    Get PDF
    We develop a dynamic investment options framework with optimal capital structure and analyze the effect of debt maturity. We find that in the absence of financing constraints short-term debt maximizes firm value. In contrast with most literature results, in the absence of constraints, higher volatility may increase initial debt for firms with low initial revenues, issuing long term debt that expires after the investment option maturity. This effect, which is due to the option value of receiving the value of assets and remaining tax savings, does not hold for short term debt and firms with high profitability, where an increase in volatility reduces the firm value. The importance of short-term debt is reduced in the presence of non-negative equity net worth or debt financing constraints and firms behave more conservatively in the use of initial debt. With non-negative equity net worth, higher volatility has adverse effects on the firm value, while with debt financing constraints higher volatility may enhance firm value for firms with relatively low revenue that have out-of-the-money investment options

    Tax Loss Offset Restrictions - Last Resort for the Treasury? An Empirical Evaluation of Tax Loss Offset Restrictions Based on Micro Data

    Full text link
    In Germany, the tax loss carry-forward of corporations significantly increased over the last decade. At the same time only a small percentage of losses have been effectively offset in the following periods. One potential reason for this puzzle is that stricter loss offset restrictions have been introduced in recent years. I use a newly developed micro simulation model for the corporate sector in Germany to evaluate the fiscal effects of these restrictions. Additionally, distributional breakdowns concerning the amounts of tax loss carry-forward and the effects of loss offset restrictions are provided. I find that the restrictions on the use of tax loss carryback are rather ineffective while the newly introduced minimum taxation considerably increases yearly tax revenue by 1.1 billion

    The asymmetric effects of industry specific volatility in momentum returns

    Get PDF
    In this paper we look specifically at the effect of industry volatility on momentum returns, a phenomenon that has been overlooked in previous studies. We find that industry volatility has asymmetric effects on the winner and loser portfolios. The cross-sectional variation in the returns of high and low volatility winners is driven primarily by industry volatility. It disappears after controlling for the effect of industry volatility on total firm volatility. However, for firms in the loser portfolios, the differential return between high and low volatile stocks remains even after adjusting for industry volatility. This implies that momentum returns are mainly induced by industry specific news at the winners’ level and firm-specific factors at the losers’ level. We also find that liquidity, which seems to have little or no influence on the momentum phenomenon before accounting for industry volatility, has an important effect after industry volatility is accounted for
    • …
    corecore