2,177 research outputs found

    Magnetic Flux Braiding: Force-Free Equilibria and Current Sheets

    Get PDF
    We use a numerical nonlinear multigrid magnetic relaxation technique to investigate the generation of current sheets in three-dimensional magnetic flux braiding experiments. We are able to catalogue the relaxed nonlinear force-free equilibria resulting from the application of deformations to an initially undisturbed region of plasma containing a uniform, vertical magnetic field. The deformations are manifested by imposing motions on the bounding planes to which the magnetic field is anchored. Once imposed the new distribution of magnetic footpoints are then taken to be fixed, so that the rest of the plasma must then relax to a new equilibrium configuration. For the class of footpoint motions we have examined, we find that singular and nonsingular equilibria can be generated. By singular we mean that within the limits imposed by numerical resolution we find that there is no convergence to a well-defined equilibrium as the number of grid points in the numerical domain is increased. These singular equilibria contain current "sheets" of ever-increasing current intensity and decreasing width; they occur when the footpoint motions exceed a certain threshold, and must include both twist and shear to be effective. On the basis of these results we contend that flux braiding will indeed result in significant current generation. We discuss the implications of our results for coronal heating.Comment: 13 pages, 12 figure

    Characterization of health care utilization in patients receiving implantable cardioverter-defibrillator therapies: An analysis of the managed ventricular pacing trial.

    Get PDF
    BACKGROUND: Implantable cardioverter-defibrillators (ICDs) are effective in terminating lethal arrhythmias, but little is known about the degree of health care utilization (HCU) after ICD therapies. OBJECTIVE: Using data from the managed ventricular pacing trial, we sought to identify the incidence and types of HCU in ICD patients after receiving ICD therapy (shocks or antitachycardia pacing [ATP]). METHODS: We analyzed HCU events (ventricular tachyarrhythmia [VTA]-related, heart failure-related, ICD implant procedure-related, ICD system-related, or other) and their association with ICD therapies (shocked ventricular tachycardia episode, ATP-terminated ventricular tachycardia episode, and inappropriately shocked episode). RESULTS: A total of 1879 HCUs occurred in 695 of 1030 subjects (80% primary prevention) and were classified as follows: 133 (7%) VTA-related, 373 (20%) heart failure-related, 97 (5%) implant procedure-related, 115 (6%) system-related, and 1160 (62%) other. Of 2113 treated VTA episodes, 1680 (80%) received ATP only and 433 (20%) received shocks. Stratifying VTA-related HCUs on the basis of the type of ICD therapy delivered, there were 25 HCUs per 100 shocked VTA episodes compared with 1 HCU per 100 ATP-terminated episodes. Inappropriate ICD shocks occurred in 8.7% of the subjects and were associated with 115 HCUs. The majority of HCUs (52%) began in the emergency department, and 66% of all HCUs resulted in hospitalization. CONCLUSION: For VTA-related HCUs, shocks are associated with a 25-fold increase in HCUs compared to VTAs treated by ATP only. Application of evidence-based strategies and automated device-based algorithms to reduce ICD shocks (higher rate cutoffs, use of ATP, and arrhythmia detection) may help reduce HCUs

    Option Value and Dynamic Programming Model Estimates of Social Security Disability Insurance Application Timing

    Get PDF
    This paper develops dynamic structural models - an option value model and a dynamic programming model - of the Social Security Disability Insurance (SSDI) application timing decision. We estimate the time to application from the point at which a health condition first begins to affect the kind or amount of work that a currently employed person can do. We use Health and Retirement Study (HRS) and restricted access Social Security earnings data for estimation. Based on tests of both in-sample and out-of-sample predictive accuracy, our option value model performs better than both our dynamic programming model and our reduced form hazard model

    Option Value and Dynamic Programming Model Estimates of Social Security Disability Insurance Application Timing

    Get PDF
    This paper develops dynamic structural models - an option value model and a dynamic programming model - of the Social Security Disability Insurance (SSDI) application timing decision. We estimate the time to application from the point at which a health condition first begins to affect the kind or amount of work that a currently employed person can do. We use Health and Retirement Study (HRS) and restricted access Social Security earnings data for estimation. Based on tests of both in-sample and out-of-sample predictive accuracy, our option value model performs better than both our dynamic programming model and our reduced form hazard model

    Observations of the galactic plane by the zodiacal infrared project

    Get PDF
    The two rocket flights of the Zodiacal Infrared Project (ZIP), flown 18 August 1980 and 31 July 1981, were intended to provide data on the near-infrared thermal emission of the interplanetary dust cloud over a broad range of ecliptic coordinates (latitudes -60 to +85 degrees, solar elongation angles 22 to 90 degrees and 140 to 180 degrees). In addition, their multiple crossings of the Galactic plane provided low resolution spectral data (delta lambda/lambda ranging from 1. to 0.1, for effective wavelengths from 3 to 30 microns) for most of the first quadrant (longitudes 30 to 100 degrees). Examples are displayed. Having made a thorough reanalysis of the calibration of the ZIP database, researchers present the salient features of the Galactic plane as observed by ZIP. The binned, in-plane data, corrected for zodiacal emission, generally show an exponential decrease with increasing longitude. The fitted exponential scale-length is 0.038/degree, and can be inverted to derive a radial density profile. Channel ratios are converted to temperatures by using model spectra in which thermal emitters with emissivity approx. 1/lambda are convolved with the filter responses. The results for channels 5 (11 microns) and 12 (21 microns) are shown, along with similarly derived temperatures from Infrared Astronomy Satellite (IRAS) 12 microns and 25 microns data. The ZIP data show little variation with longitude, consistent with IRAS results. A narrow spectral feature at 13 microns appears consistently in data for the plane (uncorrected for zodiacal emission). However, this is strongly contaminated by calibration problems for channel 8. Researchers suggest that residual emission at 13 microns arises from the (NeII) line at 12.8 microns

    Torsion pairs and simple-minded systems in triangulated categories

    Full text link
    Let T be a Hom-finite triangulated Krull-Schmidt category over a field k. Inspired by a definition of Koenig and Liu, we say that a family S of pairwise orthogonal objects in T with trivial endomorphism rings is a simple-minded system if its closure under extensions is all of T. We construct torsion pairs in T associated to any subset X of a simple-minded system S, and use these to define left and right mutations of S relative to X. When T has a Serre functor \nu, and S and X are invariant under \nu[1], we show that these mutations are again simple-minded systems. We are particularly interested in the case where T is the stable module category of a self-injective algebra \Lambda. In this case, our mutation procedure parallels that introduced by Koenig and Yang for simple-minded collections in the derived category of \Lambda. It follows that the mutation of the set of simple \Lambda-modules relative to X yields the images of the simple \Gamma-modules under a stable equivalence between \Gamma\ and \Lambda, where \Gamma\ is the tilting mutation of \Lambda\ relative to X.Comment: Minor corrections. To appear in Applied Categorical Structures. The final publication is available at springerlink.com: http://link.springer.com/article/10.1007%2Fs10485-014-9365-

    Seasonal dependence of peroxy radical concentrations at a Northern hemisphere marine boundary layer site during summer and winter: evidence for radical activity in winter

    Get PDF
    Peroxy radicals (HO2+ÎŁ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state

    The LWA1 Radio Telescope

    Full text link
    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.Comment: 9 pages, 14 figures, accepted by IEEE Trans. Antennas & Propagation. Various minor changes from previous versio

    Think globally, buy locally: International agreements and government procurement

    Get PDF
    Abstract Do international treaties constrain national governments? The answer appears to be "yes" when it comes to the use of traditional barriers to trade, such as tariffs. Yet, while many governments have cut tariffs to comply with international agreements, they have often raised non-tariff barriers in their place. One increasingly prominent non-tariff barrier is discrimination in public procurement. Governments frequently discriminate against foreign suppliers in favor of domestic ones when buying goods and services. In an attempt to reduce procurement discrimination, international organizations, such as the World Trade Organization, have devoted ever more attention to members' procurement practices. Additionally, a growing number of preferential trade agreements seek to regulate public procurement. It remains unclear, however, whether international rules are effective in changing governments' purchasing behavior. Using original data, we find that neither multilateral nor preferential procurement agreements substantially reduce governments' propensity to "buy national." These results illustrate the difficulty of regulating non-transparent policy areas via international treaties

    Collagen‐Electrohydrodynamic Hierarchical Lithography for Biomimetic Photonic Micro‐Nanomaterials

    Get PDF
    Biologically engineered nanomaterials give rise to unique and intriguing properties, which are not available in nature. The full‐realization of such has been hindered by the lack of robust and straightforward techniques to produce the required architectures. Here a new bottomup bionano‐engineering route is developed to construct nanomaterials using a guided assembly of collagen building blocks, establishing a lithographic process for three‐dimensional collagen‐based hierarchical micronano‐architectures. By introducing optimized hybrid electro‐hydrodynamic micronano‐lithography exploiting collagen molecules as biological building blocks to self‐assemble into a complex variety of structures, quasi‐ordered mimics of metamaterials‐like are constructed. The tailor‐designed engineered apparatus generates the underlying substrates with vertical orientation of collagen at controlled speeds. Templating these hierarchical structures into inorganic materials allows the replication of their network into periodic metal micronano‐assemblies. These generate substrates with interesting optical properties, suggesting that size‐and‐orientation dependent nanofilaments with varying degree of lateral order yield distinctly coloured structures with characteristic optical spectra correlated with observed colours, which varying diameters and interspacing, are attributable to coherent scattering by different periodicity of each fibrous micronano‐structure. The artificial mimics display similar optical characteristics to the natural butterfly wing's structure, known to exhibit extraordinary electromagnetic properties, driving future applications in cloaking, super‐lenses, photovoltaics and photodetectors
    • 

    corecore