OBSERVATIONS OF THE GALACTIC PLANE BY THE ZODIACAL INFRARED PROJECT
L. J Rickard - E. O. Hulbert Center for Space Research $\begin{gathered}\text { Naval Research Laboratory } \\ \text { Washington, DC }\end{gathered}$
S. W. Stemwedel - Applied Research Corporation Landover, MD
S. D. Price - Air Force Geophysical Laboratory Hanscom AFB, MA

The two rocket flights of the Zodiacal Infrared Project (ZIP; Murdock and Price 1985, Astr. J., 90, 375), flown 18 August 1980 and 31 July 1981, were intended to provide data on the near-infrared thermal emission of the interplanetary dust cloud over a broad range of ecliptic coordinates (latitudes -60° to $+85^{\circ}$, solar elongation angles 22° to 90° and 140° to 180°). In addition, their multiple crossings of the Galactic plane provided low resolution spectral data ($\Delta \lambda / \lambda$ ranging from 1 . to 0.1 , for effective wavelengths from 3 to $30 \mu \mathrm{~m}$) for most of the first quadrant (longitudes 30 to 100 degrees). Examples are displayed in figure 1. Having made a thorough reanalysis of the calibration of the ZIP database, we present the salient features of the Galactic plane as observed by ZIP.

The binned, in-plane data, corrected for zodiacal emission, generally show an exponential decrease with increasing longitude. Figure 2 displays this for the $11 \mu \mathrm{~m}$ data. The fitted exponential scale-length is $0.038 /^{\circ}$, and can be inverted to derive a radial density profile. Note as well the appearance of excess emission at 83° arising from material associated with the Cyg-X region.

Channel ratios are converted to temperatures by using model spectra in which thermal emitters with emissivity $\sim \lambda^{-1}$ Are convolved with the filter responses. The results for channels $5(11 \mu \mathrm{~m})$ and $12(21 \mu \mathrm{~m})$ are shown sin figure 3, along with similarly derived temperatures from IRAS $12 \mu \mathrm{~m}$ and $25 \mu \mathrm{~m}$ data. The ZIP data show little variation with longitude, consistent with IRAS results.

A narrow spectral feature at $13 \mu \mathrm{~m}$ appears consistently in data for the plane (uncorrected for zodiacal emission). However, this is strongly contaminated by calibration problems for channel 8. We suggest that residual emission at $13 \mu \mathrm{~m}$ arises from the [NeIl] line at $12.8 \mu \mathrm{~m}$.

figure 1

observations of the gaiactic plane by the zodiacal tiveraked projegt

