10,031 research outputs found

    Longitudinal variations, the opposition effect and monochromatic albedos for Mars

    Get PDF
    Magnitude at zero phase, phase coefficient, and monochromatic albedo computed for Mars as function of wavelengt

    Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting

    Get PDF
    Acknowledgements: The authors would like to thank SABIC as well as EPSRC platform grant [EP/K015540/1] for financial support and the Royal Society of Chemistry for a Wolfson Merit Award. In order to protect intellectual property the data underpinning this publication are not made publicly available. All enquiries about the data should be addressed to [email protected] reviewedPostprin

    Highly active iridium(I) complexes for the selective hydrogenation of carbon-carbon multiple bonds

    Get PDF
    New iridium(I) complexes, bearing a bulky NHC/phosphine ligand combination, have been established as extremely efficient hydrogenation catalysts that can be used at low catalyst loadings, and are compatible with functional groups which are often sensitive to more routinely employed hydrogenation methods

    Mortality associated with avian reovirus infection in a free-living magpie (Pica pica) in Great Britain

    Get PDF
    Avian reoviruses (ARVs) cause a range of disease presentations in domestic, captive and free-living bird species. ARVs have been reported as a cause of significant disease and mortality in free-living corvid species in North America and continental Europe. Until this report, there have been no confirmed cases of ARV-associated disease in British wild birds

    Projected free energies for polydisperse phase equilibria

    Full text link
    A `polydisperse' system has an infinite number of conserved densities. We give a rational procedure for projecting its infinite-dimensional free energy surface onto a subspace comprising a finite number of linear combinations of densities (`moments'), in which the phase behavior is then found as usual. If the excess free energy of the system depends only on the moments used, exact cloud, shadow and spinodal curves result; two- and multi-phase regions are approximate, but refinable indefinitely by adding extra moments. The approach is computationally robust and gives new geometrical insights into the thermodynamics of polydispersity.Comment: 4 pages, REVTeX, uses multicol.sty and epsf.sty, 1 postscript figure include

    Low voltage control of ferromagnetism in a semiconductor p-n junction

    Full text link
    The concept of low-voltage depletion and accumulation of electron charge in semiconductors, utilized in field-effect transistors (FETs), is one of the cornerstones of current information processing technologies. Spintronics which is based on manipulating the collective state of electron spins in a ferromagnet provides complementary technologies for reading magnetic bits or for the solid-state memories. The integration of these two distinct areas of microelectronics in one physical element, with a potentially major impact on the power consumption and scalability of future devices, requires to find efficient means for controlling magnetization electrically. Current induced magnetization switching phenomena represent a promising step towards this goal, however, they relay on relatively large current densities. The direct approach of controlling the magnetization by low-voltage charge depletion effects is seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets are separated by many orders of magnitude in their typical carrier concentrations. Here we demonstrate that this concept is viable by reporting persistent magnetization switchings induced by short electrical pulses of a few volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure

    Isolating Triggered Star Formation

    Get PDF
    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field'' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field'' galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj <= -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5%) of these L^\star and sub-L^{\star} galaxies in isolated 50 (30) kpc/h pairs exhibit star formation that is boosted by a factor of >~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context. (Abridged.)Comment: 12 pages, 10 figures, emulateapj format, accepted by Ap

    Multi-level study of C3H2: The first interstellar hydrocarbon ring

    Get PDF
    Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position
    corecore