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ABSTRACT 

 

This work presents a systematic study of the effect of fabrication temperature (450 to 650 oC) on the 

structure and electronic properties of g-C3N4 prepared from melamine. The work is conducted by X-ray 

diffraction, elemental analysis, BET nitrogen adsorption, UV-vis absorption, and electron paramagnetic 

resonance (EPR). The photocatalytic activity is tested for hydrogen production in the presence of oxalic 

acid (OA) as well as triethanolamine (TEOA). A considerable change in the morphology is observed with 

increasing the synthesis temperature resulting in an increase of the surface area, likely due to thermal 

etching at elevated temperatures. The decrease of charge carriers’ concentrations, per unit area, with 

annealing temperatures may be due to the decrease of the conjugation of the polymer. Probing the activity 

of g-C3N4 for hydrogen evolution reinforced this conclusion, the rate of hydrogen evolution per unit area 

for both OA or TEOA decreased with annealing temperatures. An interesting finding is the correlation 

between the ratio CO2:H2 and the increase in the band gap of g-C3N4 prepared at different temperatures 

when oxalic acid is used as an electron donor. This suggests that water oxidation becomes easier with 

increasing the size of the band gap, probably due to a lowering of the valence band edge.   
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INTRODUCTION 

 

Securing sustainable processes for energy production is an integral part for a future economy in order to 

curb atmospheric pollutions. Hydrogen production from water stemmed from the pioneering work of 

Fujishima and Honda [1] has attracted considerable attention of the scientific community. Hydrogen can 

be produced via either photo-degradation of organic compounds (i.e. photo-reforming for example) or 

direct water splitting. The latter is considered as the most challenging due to the thermodynamic limitation 

of the four holes process needed for water oxidation [2]. Hence one of the half reactions, usually proton 

reduction, is studied using sacrificial agents. Among the materials of recent interest are those based on g-

C3N4 due to their stability and relatively small band gap (2.7 eV) [3] when compared to other stable wide 

band gap materials. 

Graphitic carbon nitride is a metal free semi-conductor composed mainly of carbon and nitrogen. The 

ideal g-C3N4 is composed of infinite and highly conjugated 2D sheets with a C:N ratio of 0.75 and a 3D 

organization close to graphite. Resolving the 2D structure has attracted a lot of attention and it has been 

shown that g-C3N4 is a tri-s-triazine unit based polymer [4]. More recently, the 3D organization of this 

highly disordered material has been investigated using X-ray diffraction and neutron scattering. The 

structure is best described by parallel chains of tri-s-triazine units organized in layers with a slight offset 

from each other in order to minimize the π-π interaction [5]. Unlike graphite, g-C3N4 is a semi-conductor 

due to the uniform distribution of the π electrons over the polymer network. The relatively small band gap 

of 2.7eV allows part of visible light harvesting, while its conduction band edge is well above the reduction 

potential of hydroxide ions to molecular hydrogen [3]. The valence band edge however is not ideally 

located with regards to the oxidation potential of water. The small energy difference suggests the need for 

a sacrificial agent in order to study the hydrogen evolution reaction [3]. 

Studies on the effect of the annealing temperature of g-C3N4 have previously been conducted by other 

workers [6–9] (among others), however few of those included EPR. Synthesis temperature affects the 

extent of the 2D ordering within the polymer and hence the number of defects present in the structure, 

which may be paramagnetic [10]. Studying the concentration of the paramagnetic charge carriers as a 

function of annealing temperature and the influence of band gap irradiation on these may bring new 

insight into the photocatalytic properties of g-C3N4.  

In this work, we have studied the effect of synthesis temperature on g-C3N4 structure, BET surface area, 

band gap and charge carriers concentrations in order to link them to the catalytic performance for 

hydrogen production. In particular, we would like to address the presence or absence of direct relationship 

between the surface area and photo-catalytic activity. 

  



EXPERIMENTAL 

 

Synthesis of Pt/g-C3N4 annealed at different temperatures 

g-C3N4 was synthesized directly from melamine (99% Sigma Aldrich) via a solid state thermal 

polycondensation reaction procedure. The white precursor was heated at temperatures ranging from 450 to 

650°C for 15 hours in static air (heating rate: 5°C·min-1) in an alumina crucible covered with aluminum 

foil in order to minimize gas evolution. Platinum (1%wt) was loaded on the previously prepared g-C3N4 

via an impregnation method from hexachloroplatinic acid (H2PtCl6·6H2O) (99.9% metal basis Alfa 

Aesar). 

Characterisation tools 

X-ray diffraction was carried out using a PANalytical Empyrean diffractometer equipped with a Cu 

radiation source. (CuKα1, λα1=1.5406 Å). Data were collected at room temperature.  

A JASCO V650 spectrophotometer was used, for the absorbance of powdered samples, equipped with a 

60 mm diameter integrating sphere (ISV-722) allowing diffuse reflectance measurements. Band gap 

determination was carried out via a Kubelka Munk transform, and Tauc plot using a dedicated software 

(SpectraManager, JASCO). 

Paramagnetic centers on g-C3N4 were observed with a JEOL JES FA200 system- X band (10 Mhz) EPR 

spectrophotometer; The samples were loaded in high purity quartz cells then evacuated for 30 min to 

reach 10-6 mbar. Irradiation of the sample cavity was achieved using a 450W Xe lamp fitted with a narrow 

band pass filter (λ = 350-450nm). 

A JEOL JSM-6700F Scanning Electron Microscope was used in secondary electron detection mode in 

order to analyze the morphology of the catalyst particles. The probe current and voltage used were: 

5kV/10µA. Samples were gold coated with a Quorum Q150R ES gold sputter in order to decrease 

charging up. 

Elemental analysis was performed using a Carlo Erba Flash 2000 Elemental Analyser. BET measurements 

were conducted on a Micromeritics TriStar II while an AccuPyc II 1340 pycnometer from Micromeritics 

was used for density measurements. 

 

Photocatalytic testing for hydrogen evolution  

The activity of the bare and platinum loaded g-C3N4 for hydrogen evolution was investigated using a 

custom designed reactor. In a typical run, 100 mg of catalyst were dispersed in 100 ml of distilled water 

(1g.L-1) together with either oxalic acid (dihydrate ACS 99.5-102.5% Alfa Aesar) or triethanolamine 

(>99% Sigma Aldrich) as the sacrificial agent (respectively 0.025M, pH=1 and 10%vol: 0.753M, pH=10). 

The reaction was performed under inert atmosphere using argon. The reaction was performed in semi 

batch mode: sampling of the gas phase was performed every hour to allow H2 and CO2 evolutions to be 

monitored by gas chromatography (i.e. 3000 Micro GC from Agilent technologies; molecular sieve for H2 

and PLOT U for CO2). Irradiation is carried out from the top using a 250V iron doped metal halide UV-vis 

lamp (1000 mW/cm2) equipped with a UV-cut off filter (allowing λ>380nm to irradiate the sample).  

 



RESULTS AND DISCUSSION 

 

X-ray diffraction patterns of the different materials are presented in Figure 1 A). The characteristic 

diffraction peaks at 2θ~ 13° and 27° can be observed on all patterns expect for CN450 which structure 

appears to be close to melem, known as an intermediate in the synthetic pathway of g-C3N4 [11]. The main 

diffraction peak at ca. 27o (d= ca. 3.2 Å) is attributed to the (002) plane and is due to distance between the 

2D layers of the graphitic material [3], referred to here as d2 of (002). The second peak located at 2θ = ca. 13° 

(d= ca. 6.7 Å) is due to the distance between the tri-s-triazine units within the 2D polymer frame [3], 

referred to here as d1 of (100). 

 

 
Figure 1: A) X-ray diffraction pattern of the g-C3N4 samples synthetized at different temperatures, B) and C) Zoom in of 

the XRD pattern for the main reflections 2θ1 ~ 13° and 2θ2 ~27° and D) Evolution of the d-spacing for (100) and (002) with 

annealing temperatures  

A narrowing of the two main diffraction peaks of g-C3N4 is observed when the synthesis temperature is 

increased. This indicates an increase in crystallinity; within the 2D layers as well as within the 3D packing 

of the polymer sheets. The d-spacing between the 2D layers of polymer (d2) decreases when the annealing 

temperature of the material increases (see Figure 1 D)). This is supporting the higher crystallinity within 
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the 3D organization of the material as this would bring a tighter packing of the polymer layers [8]. The 

opposite trend is observed for the spacing between the tri-s-triazine units (d1), it increases with increasing 

annealing temperatures. This result could be explained either by a decrease of the conjugation on the tri-s-

triazine units, due to the formation of defects or by a small shift of the tri-s-triazine unit layers stacked on 

top of each other.  

The influence of synthesis temperature on the morphology of the different g-C3N4 was observed by SEM, 

as presented on Figure 2. Preparing the material at 450°C gives a monolithic morphology, the surface of 

the particles is smooth, and very few defects can be detected, similarly to Lotsch et al. [4]. When 

annealing the sample at 500 °C a clear layered structured appears hinting to the graphitic morphology of 

the bulk, observed in Figure 2 b).Then CN550 and CN600 show clear areas where the surface is very 

rough while retaining some smooth surfaces. When the sample is synthetized at 650 °C smooth surfaces 

are replaced by smaller particles giving it a rougher aspect.  

A thermogravimetric analysis study conducted on the sample synthetized at 500 °C (see Figure S 1 : 

Thermogravimetric analysis of g-C3N4 in air synthetized at 500 °C - CN500.Figure S 1)) shows that 

degradation starts between 500 and 550 °C. This may suggest that thermal decomposition leads to etching 

of the surface from 550 °C onwards removing the outer layer of material and revealing a particulate like 

morphology as observed on Figure 2 f) [7]. Upon comparison with a previous study it seems that when the 

synthesis is performed in an open system a similar effect can be observed on a much narrower range of 

temperatures [8]. 

 



 

Figure 2: Scanning electron microscope (SEM) images of a) CN450, b) CN500, c) CN550, d) CN600, e) CN650 at a 

magnification of 10K, f) CN550 (represented in c) at 20K, and g) Transmission Electron Microscope (TEM) images of 

CN500 loaded with 1wt. %Pt after photocatalytic test using oxalic acid (0.025M) as sacrificial agent 

TEM micrographs on 1% wt. Pt loaded CN500 after photocatalytic tests are presented in Figure 2 g). 

Nanoparticles are observed on the micrographs with an average diameter of 5nm. The lattice fringes of 

0.23nm are characteristics of Pt metal proving the in situ reduction of the chloroplatinic acid precursor 

[12]. XPS data presented in supplementary information (see Figure S 2) show the formation of platinum 

metal at the surface.  

 

The surface area of the different samples as well as the apparent powder density and the absolute sample 

density are presented in Table 1. The low surface area characteristic of solid state synthesis increases with 

the annealing temperature from 4 to 41 m2.g-1. The apparent and absolute sample densities follow two 

opposite trends and are linearly correlated. When the annealing temperature increases, the absolute density 

increases while the apparent density decreases. This suggests that increasing the temperature during the 

synthesis of g-C3N4 leads to a denser sample as suggested by the tighter packing of the 2D layers of 

polymer along with higher inter-particle void. The latter is easily supported by the increased BET surface 

area and the rougher morphology displayed on the SEM images. 
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Table 1 : BET surface area, absolute density, apparent powder density and C:N, C:H, N:H ratios from elemental analysis 

for the different g-C3N4 prepared in this study. 

 CN450 CN500 CN550 CN600 CN650 

BET surface area (m2.g-1) 4 10 22 38 41 

Absolute density (g.cm-3) 1.71 1.80 1.90 2.16 2.39 

Apparent powder density (g.cm-3) 0.35 0.31 0.27 0.16 0.09 
      

C:N ratio (atomic %) 0.63 0.67 0.68 0.68 0.68 

C:H ratio (atomic %) 1.86 2.41 2.75 3.45 3.88 

N:H ratio (atomic %) 1.16 1.60 1.86 2.35 2.65 

 

Table 1 also shows elemental analysis data. The carbon to nitrogen ratio increased until 550°C, which is in 

line with the loss of NH3 during the formation of melem and supported by the weight loss during the 

synthesis. However the C:N ratio plateaus at 0.68 which is quite far from the theoretical value of 0.75, 

suggesting residual N atoms on the edges of the polymer sheets. An increase of the carbon to hydrogen 

and nitrogen to hydrogen ratios was also observed which implies an increased number of tri-s-triazine 

units in the polymer layers of g-C3N4. This result is in line with the increased crystallinity within the 2D 

layers of polymer observed via XRD (see Figure 1). 

 

The UV-visible absorption in Figure 3 A) shows that all materials have a strong absorption around 400nm. 

The two samples synthetized at the highest temperatures are displaying an absorbance shoulder around 

500nm, matching with their darker color [9]. The band gap of the different photo-catalysts were calculated 

using the Tauc plot for a direct allowed transition (n=1/2) [13]. Figure 3 B) shows that the band gap 

decreases when the synthetic temperature is increased up to 550 °C, in correlation with the C:N ratio. This 

is in line with previous findings on amorphous carbon doped with nitrogen suggesting that as the size of 

the sp2 C=N clusters increases, the state density of π bonding in the sp2 cluster increases leading to a 

decrease of the optical band gap [13–15]. It has to be noted that the material synthetized at 600 °C 

presents two different band gaps, which has not been reported in the literature so far [6,8,9,16].The lower 

one being in the continuity with the band gaps obtained for the materials synthesized at lower temperature 

while the higher one is closer to the data obtained at 650 °C. The synthesis temperature of 600 °C appears 

to be a turning point in the absorbance properties of g-C3N4. 



 
Figure 3 : A) UV-Vis Absorbance of the g-C3N4 series. B) Extracted direct band gaps of the g-C3N4 series. C) Lorentzian 

lines obtained by integration of electron paramagnetic resonance (EPR) absorption signal under 400nm light irradiation 

at room temperature. D) Doubly integrated EPR absorption signals under light irradiation at two different temperatures 

(80K and 298K), dark signal subtracted; data are normalized to the apparent density and the surface area of the samples.  

Figure 3( C) presents the Lorentzian lines obtained during EPR data collection under light irradiation at 

room temperature. The absence of features in most of the signals obtained as well as the g value of 2.003 

is coherent with previous literature findings. Most of the literature agrees that with such a g value and the 

absence of the typical hyperfine splitting expected from nitrogen; the EPR signal in carbon nitride 

polymers is likely to arise from unpaired electrons preferentially localized on carbon atoms [10,17,18]. 

However, a study based on solid state NMR and EPR shows that nitrogen located electron should not be 

ruled out, as electron delocalization could explain the absence of hyperfine splitting [19]. 

The sample synthetized at 450°C shows a small extra feature which can also be noticed in CN550 and 

CN500. As the crystallographic data suggested the sample synthetized at 450 °C is closer to melem than 

g-C3N4. Hence the extra line observed on those materials is most likely coming from some intermediate, 

as melem and melamine do not show any observable EPR signal [8]. As the apparent powder density and 

the surface area of g-C3N4 are impacted by the annealing temperature the EPR data has to be normalized 

to allow comparison of the samples between them. Moreover in order to monitor only the impact of light 

irradiation in the creation of paramagnetic centers, the signal obtained in the dark was subtracted.  
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The normalized doubly integrated EPR signal on Figure 3 D) shows that the increase of the signal under 

light irradiation is more dramatic at 80K than at 298K, however they both present almost the exact same 

trend. The concentration of paramagnetic species per volume and surface area increases from CN450 to 

CN500, where it reaches a maximum, and then decreases upon annealing at higher temperatures during 

the synthesis. EPR data under light irradiation is closely related to the separation of the charges formed 

due to light absorption. In graphitic carbon nitride charge delocalization over the π network is the key to 

charge separation, hence should be for photocatalytic activity. The sample synthetized at 450 °C stands 

out from the other ones showing an XRD pattern (see Figure 1 A)) close to melem, an intermediate in g-

C3N4 polymerisation reaction. The increase in charge carrier concentration from CN450 to CN500 is in 

line with a drastic change in crystalline structure revealing the fully polymerized material at 500°C. Then 

as the annealing temperature increases from 500 °C onward g-C3N4 gets more crystalline (see Figure 1 B) 

and C)). It is worth indicating that the surface of the photocatalyst increases together with an increase of d1 

(the d spacing between the tri-s-triazine units of the polymer) above 500oC (see Figure 2 and Figure 1 D)). 

The decrease in charge carriers concentrations (see Figure 3 D)) may be linked to increasing amounts of 

surface or bulk defects formed upon annealing to higher temperatures as suggested by Gu et al. [8]. 

 

The photocatalytic activity of bare and 1%wt. platinum loaded g-C3N4 samples were tested in a custom 

made reactor using oxalic acid as a sacrificial reagent. Along with hydrogen, carbon dioxide was also 

monitored via gas chromatography as the result of oxidation of oxalic acid via the valence band holes of 

the semiconductor. Figure 4 A) shows the increase of activity when introducing a noble metal on the 

surface of g-C3N4 ; hydrogen evolution of g-C3N4 when synthetized at 450 °C increases from 54 to 3900 

µmol.h-1g-1. Because Pt was present initially in both oxidized and reduced state, the induction period 

observed in the first few hours of the reaction is attributed to in situ reduction of the initially partially 

oxidized metal (see Figure S 3 : H2 production against time for bare and platinized g-C3N4 using A) oxalic 

acid and B) triethanolamine as sacrificial electron donor. In most cases, the constant production rate 

could be calculated by averaging the evolution rate over the few hours where the production of 

hydrogen was linear. 

). XPS data and TEM micrographs supporting the presence of platinum in its reduced form after 

photocatalytic testing are presented in Figure S 2 and Figure 2 g). The positive impact of introducing 

platinum as co-catalyst has been reported numerous times on a various set of photocatalytic systems; it 

acts as an electron sink and therefore increases holes and electron separation [20,21], it is also thought to 

provide sites for H-H bond formation [22]. This same figure shows that the activity of the Pt/g-C3N4 

catalyst decreases from 3900 µmol.h-1g-1 for CN450 to 1710 µmol.h-1g-1 for CN650. The trend observed 

for hydrogen evolution was similar to that of CO2. Similar finding was made by Wu et al.; when using 

methanol as a sacrificial agent, they saw a clear decrease of the hydrogen evolution from 301µmol.h-1.g-1 

at 520 °C to 59 µmol.h-1.g-1 at 640 °C [9]. Regarding our bare sample (see Figure 4 A) and B)) the activity 

seems to be maximal for CN500 (i.e. 125 µmol.h-1g-1) and decreases again at higher annealing 

temperature. A similar observation was made by Xu et al in 2013 on Eosin Y sensitized g-C3N4. 

 



 
Figure 4 : A) Hydrogen production rate against prior annealing temperature of g-C3N4 bare or loaded with 1wt.% Pt, 

using oxalic acid (0.025M) or triethanolamine (10%vol) as sacrificial electron donor. B) Same rate as in A) normalized by 

surface area at each annealing temperature. C) Rate ratios between CO2 and H2 against the annealing temperature of g-

C3N4. D) Rate ratio CO2 and H2 against the band gap of g-C3N4 synthetized at different temperatures.  

An interesting finding was made when comparing the ratio between the rates of CO2 and H2. Figure 4 C) 

indicates that the ratio CO2:H2 increases from 1.91 at 450 °C to 2.06 at 550 °C then decreases down to 

1.62 for CN650. Considering only photo-oxidation of oxalic acid, the theoretical ratio between hydrogen 

and carbon dioxide should be equal to 2. Hence, getting a ratio significantly lower of 1.8 and 1.62 for the 

two samples synthetized at the higher temperatures could suggest that oxidation of water is also taking 

place leading to a higher proportion of hydrogen being produced. Interestingly, the ratio between CO2 and 

H2 decreases when the band gap increases in a linear fashion as presented on Figure 4 D). Assuming that 

the conduction band edge is not affected by the annealing temperature as the band gap increases it is likely 

that the valence band is shifting to a more oxidizing energy level hence becomes better able to oxidize 

water. However, no significant oxygen evolution was detected to further confirm this theory. 

Photooxidation of water is known to be an inherently difficult process from a thermodynamic perspective 

[2,3]. There is growing evidence that water oxidation goes through the formation of surface hydrogen 

peroxide [23]. Evidence for the presence of hydrogen peroxide in solution after photocatalytic test with 
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oxalic acid as sacrificial agent has been found. However, at present more work is needed to optimize the 

analytic procedure before presenting quantitative data. 

Hydrogen evolution was also probed using triethanolamine as a hole scavenger, at the exact same testing 

conditions. The rates of hydrogen production for each annealing temperature are presented in Figure 4 A). 

No carbon dioxide was detected this time, and the bare materials did not produce any observable 

hydrogen. Surprisingly, increasing the annealing temperature leads in this case to enhanced activity for 

hydrogen evolution. However, when normalizing the activity of the platinized g-C3N4 samples by the 

surface area of g-C3N4 in Figure 4 B), the hydrogen evolution per square meter of catalyst decreased with 

increasing the annealing temperature, similar to the case of oxalic acid albeit in alkaline pH. 

 

Clearly, one should also consider that the disparity of Pt0 nano particle size and dispersion might affect the 

hydrogen evolution. From Al-Azri et al. extensive study on the impact of metal particle size on hydrogen 

production, particle size does not seem to be a key variable [24]. On the other hand it was demonstrated 

that coverage is an important factor, with lower Pt coverages leading to better hydrogen evolution [12,25]. 

However the ratio Pt:PtO does not seem to affect the activity of 1%wt Pt/g-C3N4 [12]. In this work, each 

g-C3N4 sample was impregnated with 1%wt platinum and treated in the same way so it is reasonable to 

assume that the primary variable is the surface area of the catalyst, which in turn depends upon the initial 

thermal treatment. 

The difference observed in terms of overall hydrogen evolution between TEOA (51 mmol.h-1m-2) and OA 

(343 mmol.h-1.m-2), for CN500, could be due to the difference of pH, hence to the concentration of proton 

in the solution [7]. Moreover, as the electron donors are quite different in terms of their chemical 

properties, it is likely that the mechanisms involved are not the same. Adsorption of TEOA as a rate 

determining step could further explain the positive correlation of hydrogen evolution with the surface area.  

The surface area gets larger at higher annealing temperatures which in turn would have been thought as 

leading to higher photocatalytic activity. However, electron paramagnetic resonance proved that the 

concentration of charge carrier (i.e. electron and/or holes) per square meter and per volume of sample 

decreased with increasing annealing temperatures, from 500 °C onwards. Hydrogen production rates 

observed in this study are in line with EPR results. 

 

 

CONCLUSIONS 

 

Graphitic carbon nitride synthetized at temperature ranging from 450 and 650 °C in a semi closed system 

was studied for its performance for hydrogen production. Increasing the synthesis (annealing) temperature 

resulted in: (i) increasing the surface area, (ii) increasing surface roughness and (iii) decreasing of the 

concentration of charge carriers per unit area. The destruction of the extensively conjugated system, key to 

electron/hole separation, from 500 °C onwards is a likely explanation for this trend [8]. Moreover, in order 

to assess the impact of the annealing temperature on the photocatalytic activity of g-C3N4 two different 

sacrificial agents were used: Triethanolamine (TEOA) and oxalic acid (OA); the effect of which was 



studied. TEOA led to an increase of g-C3N4 activity per unit weight prepared at increased synthesis 

temperatures, while oxalic acid showed the opposite trend. However, normalizing the rate per unit area 

was found to give the same trend in both cases: a decrease with increasing the synthesis temperature. This 

is in line with the impact of synthetic temperature on the concentration of electrons and holes normalized 

by surface area. In addition, in the case of oxalic acid an excess of molecular hydrogen compared to the 

expected ratio between H2 and CO2 was obtained when g-C3N4 was synthetized at the higher temperatures 

(i.e. 600 and 650 °C). This surplus of hydrogen is likely coming from water oxidation in competition with 

oxalic acid oxidation. A linear correlation was obtained between the band gap and the ratio between 

hydrogen and carbon dioxide for the different annealing temperature suggesting that water oxidation may 

become easier when the size of the band gap increases. Hydrogen peroxide as a reaction intermediate was 

detected in the post testing solution, however no solid conclusions can be drawn yet, work on progress.  
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SUPPLEMENTARY INFORMATION 

 

Figure S 1 : Thermogravimetric analysis of g-C3N4 in air synthetized at 500 °C - CN500. 

 

 

Figure S 2 :X-ray photoelectron spectroscopy of A) CN500 before photocatalytic test and B) CN500 after photocatalytic 

test using oxalic acid as sacrificial electron donor. A clear broadening of the Pt 4f peak towards lower binding energies is 

observed indicating the presence of Pt0 after photocatalytic testing. 
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Figure S 3 : H2 production against time for bare and platinized g-C3N4 using A) oxalic acid and B) triethanolamine as sacrificial 
electron donor. In most cases, the constant production rate could be calculated by averaging the evolution rate over the few 
hours where the production of hydrogen was linear. 
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