799 research outputs found

    Spectropolarimetric Variability and Co-Rotating Structure in HD 92207

    Full text link
    We report on low resolution (R~3000) spectropolarimetry of the A0 supergiant star HD 92207. This star is well-known for significant spectral variability. The source was observed on seven different nights spanning approximately 3 months in time. With a rotation period of approximately 1 year, our data covers approximately a quarter of the star's rotational phase. Variability in the continuum polarization level is observed over this period of time. The polarization across the Halpha line on any given night is typically different from the degree and position angle of the polarization in the continuum. Interestingly, Hbeta is not in emission and does not show polarimetric variability. We associate the changes at Halpha as arising in the wind, which is in accord with the observed changes in the profile shape and equivalent width of Halpha along with the polarimetric variability. For the continuum polarization, we explore a spiral shaped wind density enhancement in the equatorial plane of the star, in keeping with the suggestion of Kaufer etal (1997). Variable polarization signatures across Halpha are too complex to be explained by this simple model and will require a more intensive polarimetric follow-up study to interpret properly.Comment: to appear in A

    On X-ray pulsations in beta Cephei-type variables

    Full text link
    Beta Cephei-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one Beta Cep-variable also shows periodic variability in X-rays. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.Comment: accepted in A&

    Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA

    Get PDF
    We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N(2)) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with a free space Millimeter Wave Vector Network Analyzer (MVNA)

    Modeling Forbidden Line Emission Profiles from Colliding Wind Binaries

    Full text link
    This paper presents calculations for forbidden emission line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf-Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (a) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10% level. (b) Deviations from a flat-top profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-top shape. (c) The profile shape can be used to constrain the colliding wind bow shock opening angle. (d) Structure in the line profile tends to be suppressed in binaries of shorter periods. (e) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to ISO data for WR 147 and gamma Vel (WR11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For gamma Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.Comment: to appear in MNRA

    Magnetic fields in O-type stars measured with FORS1 at the VLT

    Full text link
    The presence of magnetic fields in O-type stars has been suspected for a long time. The discovery of such fields would explain a wide range of well documented enigmatic phenomena in massive stars, in particular cyclical wind variability, Halpha emission variations, chemical peculiarity, narrow X-ray emission lines and non-thermal radio/X-ray emission. Here we present the results of our studies of magnetic fields in O-type stars, carried out over the last years.Comment: 2 pages, 1 figure, to appear in Proceedings of IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Probing Wolf-Rayet Winds: Chandra/HETG X-Ray Spectra of WR 6

    Get PDF
    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.Comment: Accepted by the Astrophysical Journa

    Finding the elusive and causative autoantibody: An atypical case of autoimmune hemolytic anemia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111227/1/ccr3203.pd

    The polarization mode of the auroral radio emission from the early-type star HD142301

    Get PDF
    We report the detection of the auroral radio emission from the early-type magnetic star HD142301. New VLA observations of HD142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism responsible for the stellar auroral radio emission amplifies the radiation within a narrow beam, making the star where this phenomenon occurs similar to a radio lighthouse. The elementary emission process responsible for the auroral radiation mainly amplifies one of the two magneto-ionic modes of the electromagnetic wave. This explains why the auroral pulses are highly circularly polarized. The auroral radio emission of HD142301 is characterized by a reversal of the sense of polarization as the star rotates. The effective magnetic field curve of HD142301 is also available making it possible to correlate the transition from the left to the right-hand circular polarization sense (and vice-versa) of the auroral pulses with the known orientation of the stellar magnetic field. The results presented in this letter have implications for the estimation of the dominant magneto-ionic mode amplified within the HD142301 magnetosphere.Comment: 5 pages, 4 figures; accepted to MNRAS Letter
    • …
    corecore