31 research outputs found

    Comprehensive pharmacogenetic profiling of the epidermal growth factor receptor pathway for biomarkers of response to, and toxicity from, cetuximab

    Get PDF
    Background Somatic mutations in the epidermal growth factor receptor (EGFR) intracellular signalling pathways predict non-response to cetuximab in the treatment of advanced colorectal cancer (aCRC). We hypothesized that common germline variants within these pathways may also play similar roles. Methods We analysed 54 potentially functional, common, inherited EGFR pathway variants in 815 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy +cetuximab. Primary endpoints were response and skin rash (SR). We had >85% power to detect ORs=1.6 for variants with minor allele frequencies >20%. Results We identified five potential biomarkers for response and four for SR, although none remained significant after correction for multiple testing. Our initial data supported a role for Ser313Pro in PIK3R2 in modulating response to cetuximab - in patients with KRAS wild type CRCs, 36.4% of patients with one allele encoding proline responded, as compared to 71.2% of patients homozygous for alleles encoding serine (OR 0.23, 95% CI 0.09-0.56, P=0.0014) and this association was predictive for cetuximab (Pinteraction=0.017); however, independent replication failed to validate this association. No previously proposed predictive biomarkers were validated. Conclusions Our study highlights the need to validate potential pharmacogenetic biomarkers. We did not find strong evidence for common germline biomarkers of cetuximab response and toxicity

    Pharmacogenetic analyses of 2,183 patients with advanced colorectal cancer; Potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy.

    Get PDF
    BACKGROUND: Inherited genetic variants may influence response to, and side-effects from, chemotherapy. We sought to generate a comprehensive inherited pharmacogenetic profile for oxaliplatin and 5FU/capecitabine therapy in advanced colorectal cancer (aCRC). METHODS: We analysed more than 200 potentially functional, common, inherited variants in genes within the 5FU, capecitabine, oxaliplatin and DNA repair pathways, together with four rare dihydropyrimidine dehydrogenase (DPYD) variants, in 2183 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab (from MRC COIN and COIN-B trials). Primary end-points were response, any toxicity and peripheral neuropathy. We had >85% power to detect odds ratios (ORs) = 1.3 for variants with minor allele frequencies >20%. RESULTS: Variants in DNA repair genes (Asn279Ser in EXO1 and Arg399Gln in XRCC1) were most associated with response (OR 1.9, 95% confidence interval [CI] 1.2-2.9, P = 0.004, and OR 0.7, 95% CI 0.5-0.9, P = 0.003, respectively). Common variants in DPYD (Cys29Arg and Val732Ile) were most associated with toxicity (OR 0.8, 95% CI 0.7-1.0, P = 0.008, and OR 1.6, 95% CI 1.1-2.1, P = 0.006, respectively). Two rare DPYD variants were associated with increased toxicity (Asp949Val with neutropenia, nausea and vomiting, diarrhoea and infection; IVS14+1G>A with lethargy, diarrhoea, stomatitis, hand-foot syndrome and infection; all ORs > 3). Asp317His in DCLRE1A was most associated with peripheral neuropathy (OR 1.3, 95% CI 1.1-1.6, P = 0.003). No common variant associations remained significant after Bonferroni correction. CONCLUSIONS: DNA repair genes may play a significant role in the pharmacogenetics of aCRC. Our data suggest that both common and rare DPYD variants may be associated with toxicity to fluoropyrimidine-based chemotherapy

    Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer.

    Get PDF
    While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP-CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20-1.79, P=1.68x10−4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92-1.18, P=0.49), 0.94 (95% CI: 0.84-1.05, P= 0.27), and 0.98 (95% CI: 0.85-1.12, P=0.75) respectively. A genetic risk score for 3-hydoxy-3-methylglutaryl-coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR=0.69, 95% CI: 0.49-0.99, P=0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia. This article is protected by copyright. All rights reserved

    Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease

    Get PDF
    To identify new risk loci for colorectal cancer (CRC), we conducted a meta-analysis of seven genome-wide association studies (GWAS) with independent replication, totalling 13 656 CRC cases and 21 667 controls of European ancestry. The combined analysis identified a new risk association for CRC at 2q35 marked by rs992157 (P = 3.15 x 10(-8), odds ratio = 1.10, 95% confidence interval = 1.06-1.13), which is intronic to PNKD (paroxysmal non-kinesigenic dyskinesia) and TMBIM1 (transmembrane BAX inhibitor motif containing 1). Intriguingly this susceptibility single-nucleotide polymorphism (SNP) is in strong linkage disequilibrium (r(2) = 0.90, D' = 0.96) with the previously discovered GWAS SNP rs2382817 for inflammatory bowel disease (IBD). Following on from this observation we examined for pleiotropy, or shared genetic susceptibility, between CRC and the 200 established IBD risk loci, identifying an additional 11 significant associations (false discovery rate [FDR]) <0.05). Our findings provide further insight into the biological basis of inherited genetic susceptibility to CRC, and identify risk factors that may influence the development of both CRC and IBD.Peer reviewe

    Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer

    Get PDF
    Background: Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC. Methods: We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18 386 controls. Results: In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02-1.49, P = 0.033), 1.59 (95% CI: 1.08-2.34, P = 0.019) and 1.07 (95% CI: 1.03-1.13, P = 0.018), respectively. There was no evidence for association between birth weight and CRC (OR = 1.22, 95% CI: 0.89-1.67, P = 0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18 190 cases, 27 617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10-1.44, P = 7.7 x 10(-4)) and 1.40 (95% CI: 1.14-1.72, P = 1.2 x 10(-3)), respectively. Conclusions: These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.Peer reviewe

    Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis.

    Get PDF
    Tuberous sclerosis (TSC [MIM 191090 and MIM 191100]) is an autosomal dominant disorder characterized by hamartomas in many organs. Two thirds of cases are sporadic and are thought to represent new mutations. TSC is caused by mutations affecting either of the presumed tumor-suppressor genes, TSC1 and TSC2. Both appear to function as tumor suppressors, because somatic loss or intragenic mutation of the corresponding wild-type allele is seen in the associated hamartomas. Here we report the first comprehensive mutation analysis of TSC1 and TSC2 in a cohort of 150 unrelated TSC patients and their families, using heteroduplex and SSCP analysis of all coding exons and using pulsed-field gel electrophoresis and conventional Southern blot analysis and long PCR to screen for large rearrangements. Mutations were characterized in 120 (80%) of the 150 cases, affecting TSC1 in 22 cases and TSC2 in 98 cases. TSC1 mutations were significantly underrepresented in sporadic cases (P=. 000185). Twenty-two patients had TSC2 missense mutations that were found predominantly in the GAP-related domain (eight cases) and in a small region encoded in exons 16 and 17, between nucleotides 1849 and 1859 (eight cases), consistent with the presence of residues performing key functions at these sites. In contrast, all TSC1 mutations were predicted to be truncating, consistent with a structural or adapter role for the encoded protein. Intellectual disability was significantly more frequent in TSC2 sporadic cases than in TSC1 sporadic cases (P=.0145). These data provide the first representative picture of the distribution and spectrum of mutations across the TSC1 and TSC2 loci in clinically ascertained TSC and support a difference in severity of TSC1- and TSC2-associated disease

    Pharmacogenetic analyses of 2183 patients with advanced colorectal cancer; potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy

    No full text
    Background Inherited genetic variants may influence response to, and side-effects from, chemotherapy. We sought to generate a comprehensive inherited pharmacogenetic profile for oxaliplatin and 5FU/capecitabine therapy in advanced colorectal cancer (aCRC). Methods We analysed more than 200 potentially functional, common, inherited variants in genes within the 5FU, capecitabine, oxaliplatin and DNA repair pathways, together with four rare dihydropyrimidine dehydrogenase (DPYD) variants, in 2183 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab (from MRC COIN and COIN-B trials). Primary end-points were response, any toxicity and peripheral neuropathy. We had &gt;85% power to detect odds ratios (ORs) = 1.3 for variants with minor allele frequencies &gt;20%. Results Variants in DNA repair genes (Asn279Ser in EXO1 and Arg399Gln in XRCC1) were most associated with response (OR 1.9, 95% confidence interval [CI] 1.2–2.9, P = 0.004, and OR 0.7, 95% CI 0.5–0.9, P = 0.003, respectively). Common variants in DPYD (Cys29Arg and Val732Ile) were most associated with toxicity (OR 0.8, 95% CI 0.7–1.0, P = 0.008, and OR 1.6, 95% CI 1.1–2.1, P = 0.006, respectively). Two rare DPYD variants were associated with increased toxicity (Asp949Val with neutropenia, nausea and vomiting, diarrhoea and infection; IVS14+1G&gt;A with lethargy, diarrhoea, stomatitis, hand-foot syndrome and infection; all ORs &gt; 3). Asp317His in DCLRE1A was most associated with peripheral neuropathy (OR 1.3, 95% CI 1.1–1.6, P = 0.003). No common variant associations remained significant after Bonferroni correction. Conclusions DNA repair genes may play a significant role in the pharmacogenetics of aCRC. Our data suggest that both common and rare DPYD variants may be associated with toxicity to fluoropyrimidine-based chemotherapy.</p
    corecore