38 research outputs found

    A theoretical model for the development of a diagnosis-based clinical decision rule for the management of patients with spinal pain

    Get PDF

    The provocative lumbar facet joint

    Get PDF
    Low back pain is the most common pain symptom experienced by American adults and is the second most common reason for primary care physician visits. There are many structures in the lumbar spine that can serve as pain generators and often the etiology of low back pain is multifactorial. However, the facet joint has been increasingly recognized as an important cause of low back pain. Facet joint pain can be diagnosed with local anesthetic blocks of the medial branches or of the facet joints themselves. Subsequent radiofrequency lesioning of the medial branches can provide more long-term pain relief. Despite some of the pitfalls associated with facet joint blocks, they have been shown to be valid, safe, and reliable as a diagnostic tool. Medial branch denervation has shown some promise for the sustained control of lumbar facet joint-mediated pain, but at this time, there is insufficient evidence that it is a wholly efficacious treatment option. Developing a universal algorithm for evaluating facet joint-mediated pain and standard procedural techniques may facilitate the performance of larger outcome studies. This review article provides an overview of the anatomy, pathophysiology, diagnosis, and treatment of facet joint-mediated pain

    Comparison of human lumbar facet joint capsule strains during impulse loading versus physiological motions.

    No full text
    Abstract BACKGROUND CONTEXT: Spinal manipulation (SM) is an effective treatment for low back pain (LBP), and it has been theorized that SM induces a beneficial neurophysiological effect by stimulating mechanically sensitive neurons in the lumbar facet joint capsule (FJC). PURPOSE: The purpose of this study was to determine whether human lumbar FJC strains during simulated SM were different from those that occur during physiological motions. STUDY DESIGN/SETTING: Lumbar FJC strains were measured in human cadaveric spine specimens during physiological motions and simulated SM in a laboratory setting. METHODS: Specimens were tested during displacement-controlled physiological motions of flexion, extension, lateral bending, and axial rotations. SM was simulated using combinations of manipulation site (L 3 , L 4 , and L 5 ), impulse speed (5, 20, and 50 mm/s), and pre-torque magnitude (applied at T 12 to simulate patient position; 0, 5, 10 Nm). FJC strains and vertebral motions (using six degrees of freedom) were measured during both loading protocols. RESULTS: During SM, the applied loads were within the range measured during SM in vivo. Vertebral translations occurred primarily in the direction of the applied load, and were similar in magnitude regardless of manipulation site. Vertebral rotations and FJC strain magnitudes during SM were within the range that occurred during physiological motions. At a given FJC, manipulations delivered distally induced capsule strains similar in magnitude to those that occurred when the manipulation was applied proximally. CONCLUSIONS: FJC strain magnitudes during SM were within the physiological range, suggesting that SM is biomechanically safe. Successful treatment of patients with LBP using SM may not require precise segmental specificity, because the strain magnitudes at a given FJC during S

    Position Sensitivity of Feline Paraspinal Muscle Spindles to Vertebral Movement in the Lumbar Spine

    No full text
    Muscle spindles contribute to sensorimotor control by supplying feedback regarding muscle length and consequently information about joint position. While substantial study has been devoted to determining the position sensitivity of spindles in limb muscles, there appears to be no data on their sensitivity in the low back. We determined the relationship between lumbar paraspinal muscle spindle discharge and paraspinal muscle lengthening estimated from controlled cranialward movement of the L6 vertebra in anesthetized cats. Ramp (0.4 mm/s) and hold displacements (0.2, 0.4, 0.6, 0.8, and 1.2 mm for 2.5 s) were applied at the L6 spinous process. Position sensitivity was defined as the slope of the relationship between the estimated increase in muscle length and mean instantaneous frequency at each length. To enable comparisons with appendicular muscle spindles where joint angle was measured, we also calculated sensitivity in terms of the L6 and L7 intervertebral flexion angle (IVA). This angle was estimated from measurements of facet joint capsule strain (FJC) based on a previously established relationship between IVA and FJC strain in the cat lumbar vertebral column during lumbar flexion. Single-unit recordings were obtained from 12 muscle spindle afferents. Longissimus and multifidus muscles contained the receptive field of 10 and 2 afferents, respectively. Mean position sensitivity was 16.3 imp·s−1·mm−1 [10.6–22.1, 95% confidence interval (CI), P < 0.001]. Mean angular sensitivity was 5.2 imp·s−1·°−1 (2.6–8.0, P < 0.003). These slope estimates were more than 3.5 times greater compared with appendicular muscle spindles, and their CIs did not contain previous slope estimates for the sensitivity of appendicular spindles from the literature. Potential reasons for and the significance of the apparently high position sensitivity in the lumbar spine are discussed
    corecore