1,181 research outputs found

    Early medieval Italian Alps: reconstructing diet and mobility in the valleys

    Get PDF
    In Early Middle Ages (sixth\u2013eleventh centuries AD), South Tyrol (Italian Alps) played a key role for geographical and military reasons. Historical sources document that allochthonous groups (germani) entered the territory, and the material culture shows mutual cultural exchanges between autochthonous and germani. Besides the nature of the migration, the demographic and socio-cultural impacts on the local population are still unknown. Stable isotope analyses were performed to provide insights into dietary patterns, subsistence strategies, changes in socio-economic structures, and mobility, according to spatial (e.g. valleys, altitudes) and chronological (centuries) parameters. Bone collagen of 32 faunal and 91 human bone samples from nine sites, located at different altitudes, was extracted for stable carbon, nitrogen, and sulphur isotope analyses. In total, 94% (30/32) of the faunal remains were of good quality, while the humans displayed 93% (85/91) of good quality samples for \u3b413C and \u3b415N and 44% (40/91) for \u3b434S stable isotopes. The isotopic results of the animals reflected a terrestrial-based diet. Statistical differences were observed within and among the humans of the different valleys. The \u3b413C values of individuals sampled from higher altitudes indicated a mainly C3 plant-based diet compared to areas at lower altitudes, where more positive \u3b413C values showed an intake of C4 plants. The \u3b415N values suggested a terrestrial-based diet with a greater consumption of animal proteins at higher altitudes. The data revealed higher variability in \u3b434S values in the Adige valley, with individuals probably migrating and/or changing dietary habits

    Multiply Doped Nanostructured Silicate Sol–Gel Thin Films: Spatial Segregation of Dopants, Energy Transfer, and Distance Measurements

    Get PDF
    Abstract: Physical and chemical strategies that place designed molecules in spatially separated regions of surfactant-templated mesostructured silicate thin films are used to prepare films containing rhodamine 6G (R6G), lanthanide complexes, and both simultaneously. Fluorescence and photoexcitation spectra of R6G in amorphous and structured thin films show that it is located inside the surfactant micelles of structured thin films. A silylated ligand that binds lanthanides condenses to form part of the silica framework and causes the lanthanide to localize in the silica. Luminescence and photoexcitation spectra show that energy transfer from the metal complex to R6G occurs in the films. R6G quenches Tb emission in a concentrationdependent manner. Energy transfer efficiency is calculated using the Tb luminescence lifetime, and this quantity is used to calculate the distance between Tb and R6G with the aid of Fö rster theory

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    AMR, stability and higher accuracy

    Full text link
    Efforts to achieve better accuracy in numerical relativity have so far focused either on implementing second order accurate adaptive mesh refinement or on defining higher order accurate differences and update schemes. Here, we argue for the combination, that is a higher order accurate adaptive scheme. This combines the power that adaptive gridding techniques provide to resolve fine scales (in addition to a more efficient use of resources) together with the higher accuracy furnished by higher order schemes when the solution is adequately resolved. To define a convenient higher order adaptive mesh refinement scheme, we discuss a few different modifications of the standard, second order accurate approach of Berger and Oliger. Applying each of these methods to a simple model problem, we find these options have unstable modes. However, a novel approach to dealing with the grid boundaries introduced by the adaptivity appears stable and quite promising for the use of high order operators within an adaptive framework

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Enhancement of the electronic contribution to the low temperature specific heat of Fe/Cr magnetic multilayer

    Full text link
    We measured the low temperature specific heat of a sputtered (Fe23A˚/Cr12A˚)33(Fe_{23\AA}/Cr_{12\AA})_{33} magnetic multilayer, as well as separate 1000A˚1000\AA thick Fe and Cr films. Magnetoresistance and magnetization measurements on the multilayer demonstrated antiparallel coupling between the Fe layers. Using microcalorimeters made in our group, we measured the specific heat for 4<T<30K4<T<30 K and in magnetic fields up to 8T8 T for the multilayer. The low temperature electronic specific heat coefficient of the multilayer in the temperature range 4<T<14K4<T<14 K is γML=8.4mJ/K2gat\gamma_{ML}=8.4 mJ/K^{2}g-at. This is significantly larger than that measured for the Fe or Cr films (5.4 and 3.5mJ/K2mol3.5 mJ/K^{2}mol respectively). No magnetic field dependence of γML\gamma_{ML} was observed up to 8T8 T. These results can be explained by a softening of the phonon modes observed in the same data and the presence of an Fe-Cr alloy phase at the interfaces.Comment: 20 pages, 5 figure

    Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni

    Get PDF
    Copyright @ 2014 Arican-Goktas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.NIH and Sandler Borroughs Wellcome Travel Fellowshi

    Population synthesis of gamma-ray bursts with precursor activity and the spinar paradigm

    Full text link
    We study statistical properties of long gamma-ray bursts (GRBs) produced by the collapsing cores of WR stars in binary systems. Fast rotation of the cores enables a two-stage collapse scenario, implying the formation of a spinar-like object. A burst produced by such a collapse consists of two pulses, whose energy budget is enough to explain observed GRBs. We calculate models of spinar evolution using results from a population synthesis of binary systems (done by the `Scenario Machine') as initial parameters for the rotating massive cores. Among the resulting bursts, events with the weaker first peak, namely, precursor, are identified, and the precursor-to-main-pulse time separations fully agree with the range of the observed values. The calculated fraction of long GRBs with precursor (about 10 per cent of the total number of long GRBs) and the durations of the main pulses are also consistent with observations. Precursors with lead times greater by up to one order of magnitude than those observed so far are expected to be about twice less numerous. Independently of a GRB model assumed, we predict the existence of precursors that arrive up to >~ 10^3 s in advance of the main events of GRBs.Comment: 11 pages, 9 figures; published versio

    Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised proton

    Get PDF
    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.Comment: 15 pages, 13 figures and 1 tabl
    corecore