410 research outputs found

    Periodic Coherence Peak Height Modulations in Superconducting BSCCO

    Full text link
    In this paper we analyze, using scanning tunneling spectroscopy (STS), the local density of electronic states (LDOS) in nearly optimally doped BSCCO in zero field. We see both dispersive and non-dispersive spatial LDOS modulations as a function of energy in our samples. Moreover, a spatial map of the superconducting coherence peak heights shows the same structure as the low energy LDOS. This suggests that these non-dispersive LDOS modulations originate from an underlying charge-density modulation which interacts with superconductivity.Comment: 8 pages, 5 figures with 15 total eps file

    Out-of-plane dielectric constant and insulator-superconductor transition in Bi_2Sr_2Dy_{1-x}Er_xCu_2O_8 single crystals

    Full text link
    The out-of-plane dielectric constant of the parent insulator of the high-temperature superconductor Bi_2Sr_2(Dy,Er)Cu_2O_8 was measured and analysed from 80 to 300 K in the frequency range of 10^6-10^9 Hz. All the samples were found to show a fairly large value of 10-60, implying some kind of charge inhomogeneity in the CuO_2 plane. Considering that the superconducting sample Bi_2Sr_2(Ca,Pr)Cu_2O_8 also shows a similar dielectric constant, the charge inhomogeneity plays an important role in the insulator-superconductor transition.Comment: RevTex4 format, 5 pages, 3 figures, submitted to J. Phys. Condens. Ma

    On the stability of hole crystals in layered cuprates

    Full text link
    Recent STM measurements have revealed the existence of periodic charge modulations at the surface of certain cuprate superconductors. Here we show that the observed patterns are compatible with the formation of a three-dimensional crystal of doped holes, with space correlations extending between different Cu-O layers. This puts severe constraints on the dynamical stability of the crystallised hole structure, resulting in a close relationship between the periodicity of the electronic modulation and the interlayer distance.Comment: completed reference list, fig. 3 corrected; accepted for publication in Eur. Phys. J. B, Rapid Note

    Low-Frequency Optical Conductivity in Inhomogeneous d-wave Superconductors

    Full text link
    Motivated by the recent optical conductivity experiments on Bi_2Sr_2CaCu_2O_{8+delta} films, we examine the possible origin of low-frequency dissipation in the superconducting state. In the presence of spatial inhomogeneity of the local phase stiffness rho_s, it is shown that some spectral weight is removed from omega=0 to finite frequencies and contribute to dissipation. A case where both rho_s and the local normal fluid density are inhomogeneous is also considered. We find an enhanced dissipation at low frequency if the two variations are anti-correlated.Comment: To appear in Phys. Rev.

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}

    Full text link
    We report neutron scattering measurements of the structure and magnetism of stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single crystal sample demonstrate that the excess oxygen dopants form a three-dimensional ordered superlattice within the interstitial regions of the crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast rate of cooling can freeze-in the disordered-oxygen state. Hence, by controlling the cooling rate, the degree of dopant disorder in our La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same time, the quenched disorder enhances the spin density wave order in a manner analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR

    The Energy-dependent Checkerboard Patterns in Cuprate Superconductors

    Full text link
    Motivated by the recent scanning tunneling microscopy (STM) experiments [J. E. Hoffman {\it et al.}, Science {\bf 297}, 1148 (2002); K. McElroy {\it et al.}, Nature (to be published)], we investigate the real space local density of states (LDOS) induced by weak disorder in a d-wave superconductor. We first present the energy dependent LDOS images around a single weak defect at several energies, and then point out that the experimentally observed checkerboard pattern in the LDOS could be understood as a result of quasiparticle interferences by randomly distributed defects. It is also shown that the checkerboard pattern oriented along 45045^0 to the Cu-O bonds at low energies would transform to that oriented parallel to the Cu-O bonds at higher energies. This result is consistent with the experiments.Comment: 3 pages, 3 figure

    Quasiparticle scattering and local density of states in the d-density wave phase

    Full text link
    We study the effects of single-impurity scattering on the local density of states in the high-TcT_c cuprates. We compare the quasiparticle interference patterns in three different ordered states: d-wave superconductor (DSC), d-density wave (DDW), and coexisting DSC and DDW (DSC-DDW). In the coexisting state, at energies below the DSC gap, the patterns are almost identical to those in the pure DSC state with the same DSC gap. However, they are significantly different for energies greater than or equal to the DSC gap. This transition at an energy around the DSC gap can be used to test the nature of the superconducting state of the underdoped cuprates by scanning tunneling microscopy. Furthermore, we note that in the DDW state the effect of the coherence factors is stronger than in the DSC state. The new features arising due to DDW ordering are discussed.Comment: 6 page, 5 figures (Higher resolution figures are available by request

    Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors

    Full text link
    Electrons, when scattered by static random disorder, form standing waves that can be imaged using scanning tunneling microscopy. Such interference patterns, observable by the recently developed technique of Fourier transform scanning tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints characteristic of the electronic order present in a material. We exploit this feature of the FT-STS technique to propose a test for the nature of the enigmatic pseudogap phase in the high-TcT_c cuprate superconductors. Through their sensitivity to the quasiparticle spectra and coherence factors, the FT-STS patterns in principle carry enough information to unambiguously determine the nature of the condensate responsible for the pseudogap phenomenon. We argue that the next generation of FT-STS experiments, currently underway, should be able to distinguish between the pseudogap dominated by the remnants of superconducting order from the pseudogap dominated by some competing order in the particle-hole channel. Using general arguments and detailed numerical calculations, we point to certain fundamental differences between the two scenarios and discuss the prospects for future experiments.Comment: 15 pages REVTeX + 9 ps figures. For related work and info visit http://www.physics.ubc.ca/~franz; version 2 to appear in IJMP

    Inherent Inhomogeneities in Tunneling Spectra of BSCCO Crystals in the Superconducting State

    Full text link
    Scanning Tunneling Spectroscopy on cleaved BSCCO(2212) single crystals reveal inhomogeneities on length-scales of \sim30 A˚\AA. While most of the surface yields spectra consistent with a d-wave superconductor, small regions show a doubly gapped structure with both gaps lacking coherence peaks and the larger gap having a size typical of the respective pseudo-gap for the same sample.Comment: 4 pages, 4 figure
    corecore