50 research outputs found

    Experimental realization of a low-noise heralded single photon source

    Full text link
    We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.Comment: 4 pages, 5 figure

    Characterization of the L-Lactate Dehydrogenase from Aggregatibacter actinomycetemcomitans

    Get PDF
    Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a Km of approximately 150 µM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans

    Editing the genome of hiPSC with CRISPR/Cas9: disease models

    Get PDF

    Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    Get PDF
    This work was supported by the JST through its ImPACT Program, NICT, NSF CCR-08 29694, NIST 60NANB9D9170, Special Coordination Funds for Promoting Science and Technology, and the State of Bavaria. C.L. and M.M.F. acknowledge support through the AFOSR. C.M.N. acknowledges a SU2P Entrepreneurial Fellowship and R.H.H. acknowledges a Royal Society University Research Fellowship.Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.Publisher PDFPeer reviewe

    Heat-Resistant Fibers and Optical Fibers

    No full text
    corecore