458 research outputs found

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    Ruler elements in chromatin remodelers set nucleosome array spacing and phasing

    Get PDF
    Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the ‘ruler’ that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements

    ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells

    Get PDF
    International audienceICBP90 (Inverted CCAAT box Binding Protein of 90 kDa) is a recently identified nuclear protein that binds to one of the inverted CCAAT boxes of the topoisomerase IIalpha (TopoIIalpha) gene promoter. Here, we show that ICBP90 shares structural homology with several other proteins, including Np95, the human and mouse NIRF, suggesting the emergence of a new family of nuclear proteins. Towards elucidating the functions of this family, we analysed the expression of ICBP90 in various cancer or noncancer cell lines and in normal or breast carcinoma tissues. We found that cancer cell lines express higher levels of ICBP90 and TopoIIalpha than noncancer cell lines. By using cell-cycle phase-blocking drugs, we show that in primary cultured human lung fibroblasts, ICBP90 expression peaks at late G1 and during G2/M phases. In contrast, cancer cell lines such as HeLa, Jurkat and A549 show constant ICBP90 expression throughout the entire cell cycle. The effect of overexpression of E2F-1 is more efficient on ICBP90 and TopoIIalpha expression in noncancer cells (IMR90, WI38) than in cancer cells (U2OS, SaOs). Together, these results show that ICBP90 expression is altered in cancer cell lines and is upregulated by E2F-1 overexpression with an efficiency depending on the cancer status of the cell line

    MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) Measurements: Accuracy, Precision and Long-Term Stability

    Get PDF
    Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MI-PAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Astrofisica de Andalucia (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005-April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002-March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv (~ 5-20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ~15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10-50 pptv (corresponding to ~ 2-10% for CFC-12) for the RR and the FR period. Between similar to 15 and 30 km, most comparisons agree within 10-20 pptv (10-20 %), apart from ILAS-II, which shows large differences above similar to 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species -CFC-11 and CFC-12 - we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ~ 1 and 3% decade-1. For CFC-12, the drifts are also negative and close to zero up to similar to 30 km. Above that altitude, larger drifts of up to similar to 50% decade-1 appear which are negative up to similar to 35 km and positive, but of a similar magnitude, above

    NK cells from an AML patient have recovered in remission and reached comparable cytolytic activity to that of a healthy monozygotic twin mediated by the single-chain triplebody SPM-2

    Get PDF
    Background: The capacity of patient's Natural Killer cells (NKs) to be activated for cytolysis is an important prerequisite for the success of antibody-derived agents such as single-chain triplebodies (triplebodies) in cancer therapy. NKs recovered from AML patients at diagnosis are often found to be reduced in peripheral blood titers and cytolytic activity. Here, we had the unique opportunity to compare blood titers and cytolytic function of NKs from an AML patient with those of a healthy monozygotic twin. The sibling's NKs were compared with the patient's drawn either at diagnosis or in remission after chemotherapy. The cytolytic activities of NKs from these different sources for the patient's autologous AML blasts and other leukemic target cells in conjunction with triplebody SPM-2, targeting the surface antigens CD33 and CD123 on the AML cells, were compared. Methods: Patient NKs drawn at diagnosis were compared to NKs drawn in remission after chemotherapy and a sibling's NKs, all prepared from PBMCs by immunomagnetic beads (MACS). Redirected lysis (RDL) assays using SPM-2 and antibody-dependent cellular cytotoxicity (ADCC) assays using the therapeutic antibody Rituximab (TM) were performed with the enriched NKs. In addition, MACS-sorted NKs were analyzed for NK cell activating receptors (NCRs) by flow cytometry, and the release of TNF-alpha and IFN-gamma from blood samples of both siblings after the addition of the triplebody were measured in ELISA-assays. Results: Patient NKs isolated from peripheral blood drawn in remission produced comparable lysis as NKs from the healthy twin against the patient's autologous bone marrow (BM) blasts, mediated by SPM-2. The NCR receptor expression profiles on NKs from patient and twin were similar, but NK cell titers in peripheral blood were lower for samples drawn at diagnosis than in remission. Conclusions: Peripheral blood NK titers and ex vivo cytolytic activities mediated by triplebody SPM-2 were comparable for cells drawn from an AML patient in remission and a healthy twin. If these results can be generalized, then NKs from AML patients in remission are sufficient in numbers and cytolytic activity to make triplebodies promising new agents for the treatment of AML

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf ≈−0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated Using In Situ Measurements in the Tropical Lower Stratosphere

    Get PDF
    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in-situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in-situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget

    c.207C>G mutation in sepiapterin reductase causes autosomal dominant dopa-responsive dystonia

    Get PDF
    Objective: To elucidate the genetic cause of an Egyptian family with dopa-responsive dystonia (DRD), a childhood-onset dystonia, responding therapeutically to levodopa, which is caused by mutations in various genes. Methods: Rare variants in all coding exons of GCH1 were excluded by Sanger sequencing. Exome sequencing was applied for 1 unaffected and 2 affected family members. To investigate the functional consequences of detected genetic variants, urinary sepiapterin concentrations were determined by high-performance liquid chromatography. Results: A heterozygous rare nonsynonymous variant in exon 1 of sepiapterin reductase (SPR, c.207C>G, p.Asp69Glu) was found in all affected family members. Urinary concentrations of sepiapterin were above the standard of normal controls in most SPR mutation carriers, suggesting functional biochemical consequences of the mutation. Variant filtering of all genes involved in the tetrahydrobiopterin pathway, required for levodopa synthesis, revealed an additional common variant in dihydrofolate reductase (DHFR, rs70991108). The presence of both variants was significantly stronger associated with the biochemical abnormality and the clinical disease state as opposed to 1 variant only. Conclusions: The rare SPR mutation can cause autosomal dominant DRD with incomplete penetrance. The common DHFR variant might have synergistic effects on production of tetrahydrobiopterin and levodopa, thereby increasing penetrance

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Human RECQ1 helicase-driven DNA unwinding, annealing, and branch migration : insights from DNA complex structures

    Get PDF
    RecQ helicases are a widely conserved family of ATP-dependent motors with diverse roles in nearly every aspect of bacterial and eukaryotic genome maintenance. However, the physical mechanisms by which RecQ helicases recognize and process specific DNA replication and repair intermediates are largely unknown. Here, we solved crystal structures of the human RECQ1 helicase in complexes with tailed-duplex DNA and ssDNA. The structures map the interactions of the ssDNA tail and the branch point along the helicase and Zn-binding domains, which, together with reported structures of other helicases, define the catalytic stages of helicase action. We also identify a strand-separating pin, which (uniquely in RECQ1) is buttressed by the protein dimer interface. A duplex DNA-binding surface on the C-terminal domain is shown to play a role in DNA unwinding, strand annealing, and Holliday junction (HJ) branch migration. We have combined EM and analytical ultracentrifugation approaches to show that RECQ1 can form what appears to be a flat, homotetrameric complex and propose that RECQ1 tetramers are involved in HJ recognition. This tetrameric arrangement suggests a platform for coordinated activity at the advancing and receding duplexes of an HJ during branch migration
    • …
    corecore