1,178 research outputs found
Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications
This paper presents a theoretical investigation of a novel holey fiber (Photonic Crystal Fiber (PCF)) multi-channel biosensor based on surface plasmon resonance (SPR). The large gold coated micro fluidic channels and elliptical air hole design of our proposed biosensor aided by a high refractive index over layer in two channels enables operation in two modes; multi analyte sensing and self-referencing mode. Loss spectra, dispersion and detection capability of our proposed biosensor for the two fundamental modes (HE x 11 and HE y 11 ) have been elucidated using a Finite Element Method (FEM) and Perfectly Matching Layers (PML)
Acceptance of fluorescence detectors and its implication in energy spectrum inference at the highest energies
Along the years HiRes and AGASA experiments have explored the fluorescence
and the ground array experimental techniques to measure extensive air showers,
being both essential to investigate the ultra-high energy cosmic rays. However,
such Collaborations have published contradictory energy spectra for energies
above the GZK cut-off. In this article, we investigate the acceptance of
fluorescence telescopes to different primary particles at the highest energies.
Using CORSIKA and CONEX shower simulations without and with the new
pre-showering scheme, which allows photons to interact in the Earth magnetic
field, we estimate the aperture of the HiRes-I telescope for gammas, iron
nuclei and protons primaries as a function of the number of simulated events
and primary energy. We also investigate the possibility that systematic
differences in shower development for hadrons and gammas could mask or distort
vital features of the cosmic ray energy spectrum at energies above the
photo-pion production threshold. The impact of these effects on the true
acceptance of a fluorescence detector is analyzed in the context of top-down
production models
UAS Service Supplier Specification
Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible
Real-time phase-shift detection of the surface plasmon resonance
We investigate a method to directly measure the phase of a laser beam
reflected from a metallic film after excitation of surface plasmon polaritons.
This method permits real time access to the phase information, it increases the
possible speed of data acquisition, and it may thus prove useful for increasing
the sensitivity of surface plasmon based sensors
Effect of water-wall interaction potential on the properties of nanoconfined water
Much of the understanding of bulk liquids has progressed through study of the
limiting case in which molecules interact via purely repulsive forces, such as
a hard-core potential. In the same spirit, we report progress on the
understanding of confined water by examining the behavior of water-like
molecules interacting with planar walls via purely repulsive forces and compare
our results with those obtained for Lennard-Jones (LJ) interactions between the
molecules and the walls. Specifically, we perform molecular dynamics
simulations of 512 water-like molecules which are confined between two smooth
planar walls that are separated by 1.1 nm. At this separation, there are either
two or three molecular layers of water, depending on density. We study two
different forms of repulsive confinements, when the interaction potential
between water-wall is (i) and (ii) WCA-like repulsive potential. We
find that the thermodynamic, dynamic and structural properties of the liquid in
purely repulsive confinements qualitatively match those for a system with a
pure LJ attraction to the wall. In previous studies that include attractions,
freezing into monolayer or trilayer ice was seen for this wall separation.
Using the same separation as these previous studies, we find that the crystal
state is not stable with repulsive walls but is stable with WCA-like
repulsive confinement. However, by carefully adjusting the separation of the
plates with repulsive interactions so that the effective space
available to the molecules is the same as that for LJ confinement, we find that
the same crystal phases are stable. This result emphasizes the importance of
comparing systems only using the same effective confinement, which may differ
from the geometric separation of the confining surfaces.Comment: 20 pages, 10 figure
Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere
Author Posting. © American Geophysical Union,2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Global Biogeochemical Cycles, 32, (2018):1688â1702., doi: 10.1029/2018GB005948.Little is known about the nature of microbial community activity contributing to the cycling of nitrogen in organic-poor sediments underlying the expansive oligotrophic ocean gyres. Here we use pore water concentrations and stable N and O isotope measurements of nitrate and nitrite to constrain rates of nitrogen cycling processes over a 34-m profile from the deep North Atlantic spanning fully oxic to anoxic conditions. Using a 1-D reaction-diffusion model to predict the distribution of nitrogen cycling rates, results converge on two distinct scenarios: (1) an exceptionally high degree of coupling between nitrite oxidation and nitrate reduction near the top of the anoxic zone or (2) an unusually large N isotope effect (~60â°) for nitrate reduction that is decoupled from the corresponding O isotope effect, which is possibly explained by enzyme-level interconversion between nitrite and nitrate.Samples analyzed for this study were collected during the final expedition of the RV Knorr, KN223. The expedition would not have been possible without the captain and crew of the RV Knorr and the efforts of the shipboard science party. We would like to acknowledge Robert Pockalny for planning and facilitating the expedition. Inorganic geochemistry sample collection, processing, and analysis were performed shipboard by Arthur Spivack,Dennis Graham, Chloe Anderson, Emily Estes, Kira Homola, Claire McKinley, Theodore Present, and Justine Sauvage. Coring capabilities were provided by the Oregon State University and Woods
Hole Oceanographic Institute Coring Facilities, directed and funded by the U. S. National Science Foundation (NSF) Ship Facilities Program. The cored materials and discrete samples from the expedition are curated and stored by the Marine Geological Samples Laboratory at the University of Rhode Island, codirected by Rebecca Robinson and Katherine Kelly and funded by the NSF Ocean Sciences Division. The nutrient and isotope data from pore waters in this study will be available at
The Biological and Chemical Data Management Office (https://www.bcodmo.org/project/567401). This project was partially funded by an NSF CDEBI postdoctoral fellowship to C. Buchwald. Portions of this material are based upon work supported while R. W. M. was serving at the National Science Foundation.2019-04-1
Transitioning Resolution Responsibility between the Controller and Automation Team in Simulated NextGen Separation Assurance
As part of an ongoing research effort on separation assurance and functional allocation in NextGen, a controller- in-the-loop study with ground-based automation was conducted at NASA Ames' Airspace Operations Laboratory in August 2012 to investigate the potential impact of introducing self-separating aircraft in progressively advanced NextGen timeframes. From this larger study, the current exploratory analysis of controller-automation interaction styles focuses on the last and most far-term time frame. Measurements were recorded that firstly verified the continued operational validity of this iteration of the ground-based functional allocation automation concept in forecast traffic densities up to 2x that of current day high altitude en-route sectors. Additionally, with greater levels of fully automated conflict detection and resolution as well as the introduction of intervention functionality, objective and subjective analyses showed a range of passive to active controller- automation interaction styles between the participants. Not only did the controllers work with the automation to meet their safety and capacity goals in the simulated future NextGen timeframe, they did so in different ways and with different attitudes of trust/use of the automation. Taken as a whole, the results showed that the prototyped controller-automation functional allocation framework was very flexible and successful overall
Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance
In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace
Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures
This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002707. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] A technique for the development of low-cost and high-sensitivity photonic biosensing devices is proposed and experimentally demonstrated. In this technique, a photonic bandgap structure is used as transducer, but its readout is performed by simply using a broadband source, an optical filter, and a power meter, without the need of obtaining the transmission spectrum of the structure; thus, a really low-cost system and real-time results are achieved. Experimental results show that it is possible to detect very low refractive index variations, achieving a detection limit below 2 x 10(-6) refractive index units using this low-cost measuring technique. (C) 2011 Optical Society of America[This work was funded by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under contracts TEC2008-06333, JCI-009-5805, and TEC2008-05490. Support by the Universidad Politecnica de Valencia through program PAID-06-09 and the Conselleria d'Educacio through program GV-2010-031 is acknowledged.GarcĂa CastellĂł, J.; Toccafondo, V.; PĂ©rez MillĂĄn, P.; SĂĄnchez Losilla, N.; Cruz, JL.; Andres, MV.; GarcĂa-RupĂ©rez, J. (2011). Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures. Optics Letters. 36(14):2707-2709. https://doi.org/10.1364/OL.36.002707S270727093614Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., ⊠Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., & Baets, R. (2007). Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15(12), 7610. doi:10.1364/oe.15.007610Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., ⊠Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510Xu, D.-X., Vachon, M., Densmore, A., Ma, R., DelĂąge, A., Janz, S., ⊠Schmid, J. H. (2010). Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach. Optics Letters, 35(16), 2771. doi:10.1364/ol.35.002771Skivesen, N., TĂȘtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169Lee, M. R., & Fauchet, P. M. (2007). Nanoscale microcavity sensor for single particle detection. Optics Letters, 32(22), 3284. doi:10.1364/ol.32.003284GarcĂa-RupĂ©rez, J., Toccafondo, V., Bañuls, M. J., CastellĂł, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Ă. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Toccafondo, V., GarcĂa-RupĂ©rez, J., Bañuls, M. J., Griol, A., CastellĂł, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673Luff, B. J., Wilson, R., Schiffrin, D. J., Harris, R. D., & Wilkinson, J. S. (1996). Integrated-optical directional coupler biosensor. Optics Letters, 21(8), 618. doi:10.1364/ol.21.000618SepĂșlveda, B., RĂo, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., DomĂnguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive MachâZehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41Densmore, A., Vachon, M., Xu, D.-X., Janz, S., Ma, R., Li, Y.-H., ⊠Schmid, J. H. (2009). Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Optics Letters, 34(23), 3598. doi:10.1364/ol.34.003598Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146PĂ©rez-MillĂĄn, P., Torres-PeirĂł, S., Cruz, J. L., & AndrĂ©s, M. V. (2008). Fabrication of chirped fiber Bragg gratings by simple combination of stretching movements. Optical Fiber Technology, 14(1), 49-53. doi:10.1016/j.yofte.2007.07.00
A Controller-in-the Loop Simulation of Ground-Based Automated Separation Assurance in a NextGen Environment
A controller-in-the-loop simulation was conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center to investigate the functional allocation aspects associated with ground-based automated separation assurance in a far-term NextGen environment. In this concept, ground-based automation handled the detection and resolution of strategic and tactical conflicts and alerted the controller to deferred situations. The controller was responsible for monitoring the automation and managing situations by exception. This was done in conditions both with and without arrival time constraints across two levels of traffic density. Results showed that although workload increased with an increase in traffic density, it was still manageable in most situations. The number of conflicts increased similarly with a related increase in the issuance of resolution clearances. Although over 99% of conflicts were resolved, operational errors did occur but were tied to local sector complexities. Feedback from the participants revealed that they thought they maintained reasonable situation awareness in this environment, felt that operations were highly acceptable at the lower traffic density level but were less so as it increased, and felt overall that the concept as it was introduced here was a positive step forward to accommodating the more complex environment envisioned as part of NextGen
- âŠ