2,555 research outputs found
Thermodynamics of a three-flavor nonlocal Polyakov--Nambu--Jona-Lasinio model
The present work generalizes a nonlocal version of the Polyakov loop-extended
Nambu and Jona-Lasinio (PNJL) model to the case of three active quark flavors,
with inclusion of the axial U(1) anomaly. Gluon dynamics is incorporated
through a gluonic background field, expressed in terms of the Polyakov loop.
The thermodynamics of the nonlocal PNJL model accounts for both chiral and
deconfinement transitions. Our results obtained in mean-field approximation are
compared to lattice QCD results for quark flavors. Additional
pionic and kaonic contributions to the pressure are calculated in random phase
approximation. Finally, this nonlocal 3-flavor PNJL model is applied to the
finite density region of the QCD phase diagram. It is confirmed that the
existence and location of a critical point in this phase diagram depends
sensitively on the strength of the axial U(1) breaking interaction.Comment: 31 pages, 15 figures, minor changes compared to v
Calibration of Deformable Mirrors for Open-Loop Control
Deformable mirrors enable the control of wave fronts for the compensation of aberrations in optical systems and/or for beam scanning. Manufacturers of deformable mirrors typically provide calibration data that encode for the fabrication tolerances among the actuators and mirror segments to support open-loop control with high wave front fidelity and accuracy. We report a calibration method that enables users of the deformable mirrors to measure the response of the mirror itself to validate and improve the calibration data. For this purpose, an imaging off-axis Michelson interferometer was built that allowed measuring the mirror topography with high accuracy and sufficient spatial resolution. By calibrating each actuator over its entire range, the open-loop performance for our deformable mirror was improved
- …