65 research outputs found

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

    Get PDF
    BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    Structural and functional characterizations of mung bean mitochondrial nucleoids

    Get PDF
    Mitochondrial nucleoids isolated from mung bean seedlings exhibited a chromatin-like structure associated with a membrane component. A similar structure, which underwent discrete changes during cotyledon development, was identified in situ. Isolated nucleoids consisted of essentially the same phospholipids, including cardiolipin, as whole mitochondria and proteins of inner- and outer-mitochondrial-membrane origin. Actin was consistently found with mitochondrial nucleoids prepared with different detergent concentrations. Formaldehyde cross-linking of cytochalasin B- and proteinase K-treated mitochondria further revealed that actin was associated with DNA in nucleoids. Mitochondrial nucleoids were self-sufficient in directing DNA synthesis in vitro in a pattern mimicking mtDNA synthesis in isolated mitochondria. In pulse-field gel electrophoresis, newly synthesized mtDNA separated into two major components, well-bound and fast-moving forms. Nucleoids DNA synthesis was resistant to aphidicolin but sensitive to N-ethylmaleimide, which indicates that a γ-type DNA polymerase was responsible for this activity. Mitochondrial nucleoids were capable of self-directed RNA transcription in a non-random fashion in vitro. Consistent with and complementary to results from fungi and human cells done mostly in situ, our present work helps to establish the important paradigm that mitochondrial nucleoids in eukaryotes are more than mere mtDNA compaction and segregation entities but are centers of mtDNA maintenance and expression

    The Plastid Genome of Eutreptiella Provides a Window into the Process of Secondary Endosymbiosis of Plastid in Euglenids

    Get PDF
    Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content

    Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Get PDF
    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies’ publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010’s top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century [1]. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question [1–12] in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences [13–16]. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [ www.pkal.org])

    Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Acidithiobacillus ferrooxidans </it>is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism.</p> <p>Results</p> <p>The genome of the type strain <it>A. ferrooxidans </it>ATCC 23270 was sequenced and annotated to identify general features and provide a framework for <it>in silico </it>metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes.</p> <p>Conclusion</p> <p>Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of <it>A. ferrooxidans </it>in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.</p

    Purification and characterization of a DNA polymerase from the cyanobacterium Anacystis nidulans R2.

    No full text
    A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCl buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, its associated 3'----5' and 5'----3' exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolin suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium
    corecore