1,020 research outputs found

    Quantum phases of strongly-interacting bosons on a two-leg Haldane ladder

    Full text link
    We study the ground-state physics of a single-component Haldane model on a hexagonal two-leg ladder geometry with a particular focus on strongly interacting bosonic particles. We concentrate our analysis on the regime of less than one particle per unit-cell. As a main result, we observe several Meissner-like and vortex-fluid phases both for a superfluid as well as a Mott-insulating background. Furthermore, we show that for strongly interacting bosonic particles an unconventional vortex-lattice phase emerges, which is stable even in the regime of hardcore bosons. We discuss the mechanism for its stabilization for finite interactions by a means of an analytical approximation. We show how the different phases may be discerned by measuring the nearest- and next-nearest-neighbor chiral currents as well as their characteristic momentum distributions.Comment: 13 pages, 20 figure

    Recommissionig of the Hyper-EBIT by measuring x-ray spectra of highly charged ions

    Get PDF
    Electron beam ion traps (EBIT) are experimental setups for the production, analysis and extraction of highly charged ions (HCI). High precision measurements of fundamental constants, like the g factor in the Penning-trap experiment Alphatrap, benefit from the properties of HCI. For inner shell electrons in heavy HCI, the electric field that the electron experiences close to the nucleus reaches values up to 10−16V/cm. Investigating this strong interaction by measuring the properties of the bound electron therefore allows to test QED in extreme conditions. An EBIT capable to inject hydrogenlike HCI up to uranium into the Alphatrap Penning-trap setup would allow these tests. In the scope of this thesis the Hyper-EBIT, intended to provide this capability in the future, was recommissioned. After a long shutdown all of the Hyper-EBITs critical components were tested. Further the space charge compensation of the beam was determined through the study of dielectric recombination of He-like to O-like argon ions. In the process the successful operation at moderate beam energies of 7 keV and beam currents of up to 120 mA was demonstrated. This serves as preparations for the aimed beam energies of 300 keV, as the necessary high voltage components are currently under development. <br

    Relaxation and thermalization in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum quench from the atomic limit

    Full text link
    Motivated by recent experiments, we study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site and is the ground state of a system with infinitely strong repulsive interactions at unit filling. Using exact diagonalization and the density matrix renormalization group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. Typically, the relaxation to stationary values occurs over just a few tunneling times. The stationary values are identical to the so-called diagonal ensemble on the system sizes accessible to our numerical methods and we further observe that the micro-canonical ensemble describes the steady state of many observables reasonably well for small and intermediate interaction strength. The expectation values of observables in the canonical ensemble agree quantitatively with the time averages obtained from the quench at small interaction strengths, and qualitatively provide a good description of steady-state values even in parameter regimes where the micro-canonical ensemble is not applicable due to finite-size effects. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis. Moreover, we also observe that the diagonal and the canonical ensemble are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Finally, we discuss implications of our results for the interpretation of a recent sudden expansion experiment [Phys. Rev. Lett. 110, 205301 (2013)], in which the same interaction quench was realized.Comment: 19 pages, 22 figure

    Modern Aerocapture Guidance to Enable Reduced-Lift Vehicles at Neptune

    Get PDF
    Aerocapture is covered extensively in the literature as means of achieving orbital insertion with dramatic mass-saving results compared to fully-propulsive systems. One of the primary obstacles facing aerocapture is the inherent uncertainty associated with passing through a planets upper atmosphere. In-flight dispersions due to delivery errors, environment variables, and aerodynamic performance impose a large flight envelope. System studies for aerocapture often select high lift-to-drag ratios to compensate for these uncertainties. However, modern predictor-corrector guidance strategies have shown promise in recent years to provide robust control schemes in-situ. These algorithms do not rely on a pre-calculated reference trajectory and instead employ a numerical optimizer to continuously solve nonlinear equations of motion each guidance cycle. Numerical predictor-corrector strategies may provide considerable accuracy over heritage guidance schemes. The goal of this study is reproduce a landmark study of Neptune aerocapture and apply modern guidance to illustrate relative performance improvements and cost-saving potential. Capture constraints based on the theoretical corridor width are considered. Results indicate that heritage vehicles with moderate lift-to-drag ratios, lower than previous studies have indicated, may prove viable for aerocapture at Neptune

    Vortex and Meissner phases of strongly-interacting bosons on a two-leg ladder

    Get PDF
    We establish the phase diagram of the strongly-interacting Bose-Hubbard model defined on a two-leg ladder geometry in the presence of a homogeneous flux. Our work is motivated by a recent experiment [Atala et al., Nature Phys. 10, 588 (2014)], which studied the same system, in the complementary regime of weak interactions. Based on extensive density matrix renormalization group simulations and a bosonization analysis, we fully explore the parameter space spanned by filling, inter-leg tunneling, and flux. As a main result, we demonstrate the existence of gapless and gapped Meissner and vortex phases, with the gapped states emerging in Mott-insulating regimes. We calculate experimentally accessible observables such as chiral currents and vortex patterns.Comment: 4 pages + Supplementary Materia

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Spontaneous increase of magnetic flux and chiral-current reversal in bosonic ladders: Swimming against the tide

    Get PDF
    The interplay between spontaneous symmetry breaking in many-body systems, the wavelike nature of quantum particles and lattice effects produces an extraordinary behavior of the chiral current of bosonic particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While non-interacting as well as strongly interacting particles, stirred by the magnetic field, circulate along the system's boundary in the counterclockwise direction in the ground state, interactions stabilize vortex lattices. These states break translational symmetry, which can lead to a reversal of the circulation direction. Our predictions could readily be accessed in quantum gas experiments with existing setups or in arrays of Josephson junctions.Comment: 5 pages + 5 pages of supplementary materia

    Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta

    Full text link
    Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly-interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant dd. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta ±(π/2)(/d)\pm (\pi/2) (\hbar / d) in the momentum distribution function.Comment: See also Viewpoint: Emerging Quantum Order in an Expanding Gas, Physics 8, 99 (2015

    Rethinking the Pipeline of Demosaicing, Denoising and Super-Resolution

    Full text link
    Incomplete color sampling, noise degradation, and limited resolution are the three key problems that are unavoidable in modern camera systems. Demosaicing (DM), denoising (DN), and super-resolution (SR) are core components in a digital image processing pipeline to overcome the three problems above, respectively. Although each of these problems has been studied actively, the mixture problem of DM, DN, and SR, which is a higher practical value, lacks enough attention. Such a mixture problem is usually solved by a sequential solution (applying each method independently in a fixed order: DM \to DN \to SR), or is simply tackled by an end-to-end network without enough analysis into interactions among tasks, resulting in an undesired performance drop in the final image quality. In this paper, we rethink the mixture problem from a holistic perspective and propose a new image processing pipeline: DN \to SR \to DM. Extensive experiments show that simply modifying the usual sequential solution by leveraging our proposed pipeline could enhance the image quality by a large margin. We further adopt the proposed pipeline into an end-to-end network, and present Trinity Enhancement Network (TENet). Quantitative and qualitative experiments demonstrate the superiority of our TENet to the state-of-the-art. Besides, we notice the literature lacks a full color sampled dataset. To this end, we contribute a new high-quality full color sampled real-world dataset, namely PixelShift200. Our experiments show the benefit of the proposed PixelShift200 dataset for raw image processing.Comment: Code is available at: https://github.com/guochengqian/TENe
    corecore