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The interplay between spontaneous symmetry breaking in many-body systems, the wavelike nature of
quantum particles and lattice effects produces an extraordinary behavior of the chiral current of bosonic
particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While noninteracting as
well as strongly interacting particles, stirred by the magnetic field, circulate along the system’s boundary in
the counterclockwise direction in the ground state, interactions stabilize vortex lattices. These states break
translational symmetry, which can lead to a reversal of the circulation direction. Our predictions could
readily be accessed in quantum gas experiments with existing setups or in arrays of Josephson junctions.
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A charged quantum particle, due to its wavelike nature
[1], picks up an increment to its phase proportional to the
magnetic flux piercing the area enclosed by the particle’s
(closed) path. If the particle hops around a plaquette, the
accumulated phase is proportional to the magnetic flux
Φ ¼ Ba2, a being the lattice constant. Since the phase of
the wave function is defined modulo 2π, the action of a
magnetic field on quantum particles in a lattice is periodic:
If we define a dimensionless flux ϕ ¼ 2πΦ=Φ0 with the
magnetic flux quantum Φ0 ¼ h=q, where h is Planck’s
constant and q is the charge, any physical quantityA obeys
AðϕÞ ¼ Aðϕþ 2πÞ. The minimal extensive lattice on
which this behavior can emerge is a two-leg ladder
(see Fig. 1).
In this work, we discuss the intriguing effect of a

reversal of the circulation direction of the chiral current
of interacting bosons on a two-leg ladder, due to the
spontaneous formation of a large unit cell without changing
the external magnetic field. The key ingredients to realize
this effect are, first, the wavelike nature of quantum
particles defined on a lattice, and second, many-body
effects.
The basic idea is sketched in Fig. 1. For a single

plaquette, the magnetic fields corresponding to values of
the flux 0 < ϕ < π produce a ground-state net current with
a counterclockwise chirality. When one assembles these
plaquettes into a minimal extensive lattice such as the two-
leg ladder, naively, one would expect that the local currents
on individual links along the boundary of the ladder add up
to produce a net chiral current jc, also circulating in a
counterclockwise direction for 0 < ϕ < π. Indeed, this is
the case for noninteracting particles [2]. In general, since
the chiral current is a ground-state property, the relevant

unit cell does not need to be the same as the unit cell of
the underlying lattice.
If the unit cell is doubled, then this will result in a

doubling of the effective flux ϕeff ¼ 2ϕ, piercing the
enlarged unit cell of the ground state. The chiral current
jc is an odd function of flux and periodic; thus,
jcðϕÞ ¼ jcðϕ − 2πÞ ¼ −jcð2π − ϕÞ. As a consequence,
for values of the flux π=2 < ϕ < π defined with respect
to the original cell, the effective flux is in the domain
ϕeff ∈ ð−π; 0Þ modulo 2π, which one would also obtain
if the orientation of the magnetic field was inverted. Here,
we show that such an increase of the unit cell arises
as a consequence of the spontaneous breaking of discrete
lattice-translation symmetry in vortex-lattice (VL) phases.
We study the single-band Bose-Hubbard model defined

on a two-leg ladder lattice with flux ϕ per plaquette
[see Fig. 2(a)]:
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FIG. 1 (color online). A spontaneous doubling of the unit cell
leads to an increase of the effective flux as well: ϕ → 2ϕ. Under
the conditions described in the text, the chiral current jc
(indicated by the arrows) reverses its direction.
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a†l;r creates a boson on the lower (l ¼ 1) or the upper site

(l ¼ 2) of the rth rung, nl;r ¼ a†l;ral;r, and L is the number
of rungs. The hopping matrix elements between the
nearest-neighbor sites along the ladder’s legs and rungs
are denoted by J and J⊥, respectively, and U is the
repulsive on-site interaction. The filling is ρ ¼ N=ð2LÞ,
where N is the number of bosons. We carried out density
matrix renormalization group (DMRG) simulations [3,4]
for ρ < 2 and U ≳ J. For the complementary regime of
large densities ρ ≫ 1 and weak interactions U ≪ Jρ,
we use a mapping to a frustrated XY model and apply
a transfer-matrix approach [5,6] (see the Supplemental
Material [7] for details on both techniques).
Physical realizations are, for instance, either arrays of

Josephson junctions of superconducting islands in a mag-
netic field [18–20], where the bosonic particles are Cooper
pairs of electrons with q ¼ 2e, or neutral ultracold bosons
in optical lattices [21,22] in the presence of artificial gauge
fields, subject to s-wave interactions [23–25]. In the latter
type of experiments, using either superlattices [23] or a
synthetic lattice dimension [26–28] to realize ladders, chiral
currents have recently been measured.
For the two-leg bosonic ladder, the existence of

Meissner-like and vortex phases has been firmly estab-
lished both in the weakly and strongly interacting regime
[29–34]. In Fig. 2(b), obtained from a DMRG simulation,
we depict the typical behavior of local currents and particle
densities in the low-field Meissner phase. The currents
are nonzero along the boundary of the two-leg ladder,

consisting of the edge rungs and the legs of the ladder,
and vanish quickly on the inner rungs away from the
first and last rung, producing a net chiral current jc ¼
ðPrhj∥1;r− j∥2;riþhj⊥r¼1− j⊥r¼LiÞ=N (see Sec. S1 in Ref. [7]
for definitions and properties of jc). The coherence of
the relative phase of bosons on the two legs induces the
Meissner phase in bosonic ladders [5,29], and, hence,
a chiral current can also emerge in the Mott-insulating
regime for fillings with an integer number of particles per
rung [30,33].
Upon increasing the flux beyond a critical value, the

system enters into a vortex phase where local currents on
the inner rungs develop, resulting in a current configuration
that is reminiscent of a Meissner phase disordered with
vortices [5,29,33]. These vortices interact repulsively with
each other [5], yet for generic vortex densities ρv, they are
distributed in the system without any periodicity. At certain
commensurate vortex densities, VLs were predicted to form
in the ground state [5,29]. DMRG results for such VL states
are depicted in Figs. 2(c) and 2(d). In the VL superfluid
(SF) at vortex density ρv ¼ 1=3 [Fig. 2(c)], the currents on
two neighboring plaquettes form a complex [surrounded
by a dashed line in Fig. 2(c)] that is a mini copy of
the Meissner phase (with “screening” currents circulating
around the complex boundary and vanishing currents on
its inner rung), such that on every third plaquette a vortex
resides, around which the current circulates in the direction
opposite to the behavior in the Meissner phase. In Fig. 2(c),
the chiral current goes in the counterclockwise direction.
In the VL at ρv ¼ 1=2 (VL1=2 SF), obtained for ϕ≲ π, a
vortex sits on every other plaquette [Fig. 2(d)] and the
direction of the chiral current is reversed. The observation
of several stable VLs is a main result of this Letter.
For not too low particle densities and flux values close to

π, we generically observe a reversal of the chiral current
tuned by the interaction strength U=J: jc flows in a
counterclockwise direction along the ladder’s legs for
U ¼ 0 and U → ∞, yet for a certain range of interaction
strengths at low temperatures the circulation direction of
the current is reversed, as if the majority of particles swam
against the tide.
The interaction-driven chiral-current reversal is evident

from the DMRG results presented in Figs. 3(a) and 3(b).
There, we plot the chiral current as a function of U=J for
ρ ¼ 0.5 and ρ ¼ 0.8, respectively (see Ref. [7] for data
for ρ ¼ 1).
We clearly numerically resolve a current reversal, which

is tied to the presence of the VL at ρv ¼ 1=2. This state can
be realized both in the superfluid (VL1=2 SF) and the Mott-
insulating regime (VL1=2 MI). The VL1=2-SF phase is
neighbored by a vortex superfluid (VSF) for small values
of U=J. Generally, upon entering into the vortex-liquid
phases from the VL phases, in the thermodynamic limit the
absolute value jjcj of the current decreases continuously

FIG. 2 (color online). (a) Sketch: Two-leg ladder with L rungs
and a uniform flux ϕ per plaquette. (b)–(d) Local currents and
on-site densities in (b) the Meissner phase, (c) the VL1=3 SF, and
(d) the VL1=2 SF [U ¼ 2J, J⊥ ¼ 1.6J, ρ ¼ 0.8, and (b) ϕ ¼ 0.6π,
L ¼ 10, (c) ϕ ¼ 0.8π, L ¼ 120, and (d) ϕ ¼ 0.9π, L ¼ 120].
The length of the arrows encodes the strength of local currents.
The size of the circles and the intensity of the shading are
proportional to the on-site density. In (c), a Meissner-like region is
indicated by the dashed line. The chiral current is reversed in (d),
but not in (b) and (c). The value of J⊥=J ¼ 1.6 was chosen since
two VLs are realized for these parameters.
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(while for finite L, small steps are seen [35]), showing a
cusplike behavior at the phase boundary [7]. Other tran-
sitions that are crossed in Fig. 3 do not leave a fingerprint in
the interaction dependence of jc for L → ∞. For ρ ¼ 0.5,
further increasing U=J takes the system from the VL1=2 SF
into a VL1=2 MI. Typically, the sign of the chiral current
becomes positive again on the large U=J side of the VL1=2

phases. The chiral-current reversal is thus robust against
the presence or absence of a mass gap and a variation
of density. Moreover, the absolute value of the reversed
chiral current can exceed the U ¼ 0 value.
The spontaneous symmetry breaking leading to the

M-times enlarged unit cell with ϕeff ¼ Mϕ ∈ ð−π; 0Þ
modulo 2π (M ¼ 2 in Fig. 3) is a vital ingredient for
obtaining the current reversal. We argue that yet another
requirement is that the dominant contribution to the current
comes from particles with a large wavelength experiencing
the effective flux. This is exemplified by the behavior of the
chiral current in the fully gapped VL1=2 MI [see Fig. 3(a)]:
Inside this state with a doubled unit cell, the chiral current,
as a function of U=J, passes through zero and returns back
to the original direction of rotation. The localization length
of bosons in the Mott-insulating phase becomes shorter
with increasing U=J, restricting the typical wavelengths of
particles, and as a consequence, less particles see the
enlarged unit cell with doubled flux. On these grounds,
we expect that, in a given phase with a spontaneously
enlarged unit cell, the absolute value of the reversed chiral
current attains its maximum for the smallest U=J in that
phase, consistent with the data presented in Fig. 3. We
emphasize that the optimal condition for observing the

current reversal in two-leg ladders is a doubling of the
unit cell.
Interestingly, one could have deduced the existence of

the chiral-current reversal from the flux dependence of the
ground-state energy shown in Ref. [36] in the weak-
coupling regime. From the bosonization analysis of
Ref. [29], valid for J⊥ ≪ J, one can also obtain the sign
change. Yet, neither study actually discussed the reversal
effect. DMRG results indicate that the chiral-current
reversal driven by interactions also exists on three-leg
ladders [37].
The chiral current can also change its sign in fermionic

ladders [38,39] as a function of ϕ ∈ ð0; πÞ. Yet, for
fermions, the effect exists already in the noninteracting
case as a result of the band structure, while for bosons, the
interaction-induced spontaneous flux increase is crucial
for the current reversal.
To identify the regions in parameter space spanned by ϕ,

U, ρ, and J⊥, in which the VL phases exist, we present a
representative ground-state phase diagram in Fig. 4 for
U=J ¼ 2 and ρ ¼ 0.8 as a function of flux and J⊥ (see
Ref. [7] for a density versus U=J phase diagram). The
figure illustrates the plethora of phases realized in the
model: the Meissner superfluid, a VSF, a VL1=2 SF, a VL1=3

SF, and a biased ladder phase (BLP). The BLP, predicted in
mean-field theory [31], spontaneously breaks the symmetry
between the two legs by imbalancing the density [7]. The
VL1=2 SF, which leads to the chiral-current reversal, is
stable down to at least J⊥ ¼ J=2.
Since the current reversal is connected with spontaneous

symmetry breaking in the ground state, a relevant question
pertains to the effect of temperature. To obtain a quanti-
tative understanding of T > 0, we consider the limit of
large particle densities ρ ≫ 1 and weak interactions
U ≪ Jρ. Using the transfer-matrix approach [6], we obtain
the results shown in Fig. 5, where the chiral current
[Fig. 5(a)] and vortex density [Fig. 5(b)] versus flux are
presented for different temperatures. Upon reducing tem-
perature, VLs appear at ρv ¼ 1=2; 1=3; 2=5; 1=4; 1=5;….
These have anM ¼ 2; 3; 5; 4; 5;…-times enlarged unit cell,
respectively [5,6,29,36]. At zero temperature, the vortex
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FIG. 3 (color online). jc versusU=J in the proximity of the VLs
at ρv ¼ 1=2, for (a) ρ ¼ 0.5 and (b) ρ ¼ 0.8 (DMRG data,
L ¼ 160, ϕ ¼ 0.9π, J⊥ ¼ 1.6J). The exact value for U ¼ 0 is
j0c ≃ 0.08J > 0, independently of ρ. The small steps seen in the
VSF phase are finite-size effects (see Sec. S2 in Ref. [7]).
The dashed lines serve as a guide to the eye for small values of
U=J in the VSF phase, where for large system sizes (such as
L ¼ 160), it is hard to converge DMRG with respect to both the
local number of bosons and the DMRG state space [4,7].
The dashed lines connect the U ¼ 0 value to the DMRG data
point for the smallest value of U=J at which we have converged
results (see Sec. S6 of Ref. [7]), plus we indicated the kink
expected at the VL1=2-SF to VSF boundary, based on such
data as shown in Fig. S7 of Ref. [7].
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FIG. 4 (color online). ϕ versus J⊥=J phase diagram atU=J ¼ 2
and ρ ¼ 0.8. See the text for details.
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density, as a function of flux ϕ, exhibits the famous devil’s
staircase structure [36,40] with a plateau for each com-
mensurate value of ρv. The reversal of the current in the
VL1=2-SF phase clearly survives a finite temperature, which
also applies (though for lower values of temperatures) to
the current reversal in the vicinity of the VL1=3-SF state for
ϕ < 2π=3. Thus, the reversal is more stable against thermal
fluctuations than the underlying VLs. The optimal param-
eters for observing the current reversal in the weak-
coupling regime are ϕ≃ 0.9π and J⊥ ≃ 1.2J, where the
reversal occurs for kBT < J=2 [7], as is shown in Fig. 5(e)
as well as in Sec. S5 in Ref. [7].
At extremely low temperatures and for the parameters of

Fig. 5, a reversal of the chiral current is also visible in
the ρv ¼ 2=5 VL state with M ¼ 5 for ϕ≃ 4π=5 [see
Fig. 5(d)]. Other VLs [corresponding to the regions in
which plateaus are formed in the ρv ¼ ρvðϕÞ curve in
Fig. 5(b)] do not induce a reversal of the chiral current even
at T ¼ 0 since they are stable at values of fluxes for which
Mϕ ∈ ð0; πÞ modulo 2π.
A striking feature in the weak-coupling regime is the

self-similar structure of the jcðϕÞ curve for kBT ≪ J: After
the spontaneous M-fold increase of the unit cell, the chiral
current exhibits a behavior that is similar to the one in the
Meissner phase. For instance, for the VL1=2, this is visible
in Fig. 5(a) at a flux value of ϕ ¼ π and for the VLs at
ρv ¼ 1=3 and 2=5 [see Figs. 5(c) and 5(d)] at ϕ ¼ 2π=3 and
4π=5, respectively. As a result, the absolute values of the
reversed current for ϕ ∼ π are several times larger than in
the U ¼ 0 case at the same value of ϕ [compare the

continuous black curve and the red dashed curve in
Fig. 5(a) near ϕ ¼ π].
We studied the behavior of interacting bosonic particles

in the presence of a uniform magnetic flux on a two-leg
ladder. Our work has three main results. First, we deter-
mined the range of stability of VLs predicted in Refs. [5,29]
and analyzed their microscopic structure. We obtained
representative phase diagrams, showing that the system
is very rich, also realizing the BLP phase [31]. Second, we
observed the interaction-driven reversal of the chiral current
in the vicinity of certain VLs. Third, we proposed an
intuitive interpretation of the reversal via the spontaneous
increase of the effective flux due to the enlarged unit cell
in the VLs. We expect all of these results to influence
experimental work on low-dimensional bosonic systems
in the presence of gauge fields.
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