20 research outputs found

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Calculation of the efficacy of vaccines against tick infestations on cattle

    Get PDF
    Articles in International JournalsCattle ticks are responsible for great economic losses in cattle farming worldwide, and their main control method, chemicals, has been showing problems, whether resulting from the development of resistant strains of ticks or environmental contamination. Research studies directed toward developing vaccines against ticks are emerging. One way to evaluate those vaccines is to calculate the percentage of efficacy. The aim of this study was to analyze scientific publications archived in PubMed that used this method of assessment and discuss the main factors that may affect its calculation. Thus, 25 articles addressing this subject were selected. The percentage of efficacy was usually calculated in one of two ways, with one considering the reduced fertility of eggs and the other not. The latter method may underestimate the vaccine efficacy, and the most complete formula for calculating the efficacy reflects how much the vaccine actually affects the infestation. In our view, the use of the complete formula for calculating the percentage of efficacy is broader and more representative of the vaccine effect on the tick population.RESUMO - Carrapatos de bovinos sĂŁo responsĂĄveis por grandes perdas econĂŽmicas para a pecuĂĄria bovina mundial e seu principal mĂ©todo de controle, o quĂ­mico, vem apresentando problemas, seja pelo desenvolvimento de amostras de carrapatos resistentes ou pela contaminação ambiental. Na tentativa de diminuir a utilização dos acaricidas, surgem pesquisas direcionadas ao desenvolvimento de vacinas contra carrapatos. Uma maneira de avaliar essas vacinas Ă© pelo cĂĄlculo de percentagem de eficĂĄcia. O objetivo deste trabalho foi analisar as publicaçÔes cientĂ­ficas indexadas no PubMed que utilizaram este mĂ©todo de avaliação e discutir os principais fatores que podem interferir no seu cĂĄlculo. Dessa maneira, selecionaram-se 25 artigos que tratavam desse assunto. A percentagem de eficĂĄcia apareceu sendo calculada de duas formas, uma considerando a redução da fertilidade dos ovos e a outra nĂŁo. Essa Ășltima pode subestimar a eficiĂȘncia da vacina, e a fĂłrmula de cĂĄlculo da eficĂĄcia mais completa representa o quanto da infestação a vacina realmente reduziu. Em nosso entendimento, a utilização da fĂłrmula completa para o cĂĄlculo da percentagem de eficĂĄcia Ă© mais abrangente e representativa do efeito da vacina na população de carrapatos

    Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection.

    No full text
    Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found
    corecore