87 research outputs found

    Facial soft tissue thicknesses in Bulgarian adults: relation to sex, body mass index and bilateral asymmetry

    Get PDF
    Background: The aim of the study is to measure the facial soft tissue thicknesses (STTs) in Bulgarians, to evaluate the relation of the STTs to the nutritional status, sex and bilateral asymmetry, and to examine the correlations between the separate STTs as well as between the STTs and body weight, height, and body mass index (BMI). In the present study, the facial STTs were measured on computed tomography scans of the head of Bulgarian adults. Materials and methods: The STTs were measured at 7 midline and 9 bilateral landmarks. The measurements were performed in the free software InVesalius in the axial and sagittal planes. The mean, standard deviation, minimum and maximum values, median and coefficient of variation were reported for the STT at each landmark according to the sex and BMI category. The BMI, sex and bilateral differences were assessed for statistical significance. Pearson correlation analysis was applied to assess the strength and direction of the relationships between the STTs and body height, weight and BMI, as well as between separate STTs. Results and Conclusions: The facial soft tissues in Bulgarian adults changed in accordance with the nutritional status of the individual and in both sexes all STTs augmented with the increasing BMI. For both normal and overweight BMI categories, males had more soft tissue at the majority of facial points than females, as the only exceptions were observed in the cheek zone, where STTs were thicker in females. Significant bilateral differences were observed in either sex and BMI category. Stronger correlations were established for the STTs in the jaw region and between the cheek and jaw soft tissues. Besides, the correlations between the homologous bilateral landmarks were among the strongest ones

    Trivial, Strongly Minimal Theories Are Model Complete After Naming Constants

    Get PDF
    We prove that if M is any model of a trivial, strongly minimal theory, then the elementary diagram Th(MM) is a model complete LM-theory. We conclude that all countable models of a trivial, strongly minimal theory with at least one computable model are 0 -decidable, and that the spectrum of computable models of any trivial, strongly minimal theory is Σ05

    The 2D/3D Best-Fit Problem

    Get PDF
    In computer systems, the best-fit problem can be described as a search for the best transformation matrix to transform input mea- sured points from their coordinate system into a CAD model coordinate system using a criteria function for optimization. For example, if the criterion is Mini- mum Sum of Deviations, we search for a transformation matrix M that minimizes the sum of all distances from an matrix-transformed measure points to a CAD model

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in Ω⊂Rd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβ−αt^{\beta-\alpha} for 0<t≤10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of A−α\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests

    Strong jump inversion

    Get PDF
    © The Author(s) 2018. We say that a structure A admits strong jump inversion provided that for every oracle X, if X' computes D(C)'for some C ≅ A, then X computes D(B) for some B ≅ A. Jockusch and Soare (1991, APAL, 52, 39-64) showed that there are low linear orderings without computable copies, but Downey and Jockusch (1994, PAMS, 122, 871-880) showed that every Boolean algebra admits strong jump inversion. More recently, D. Marker and R. Miller (2017, JSL, 82, 1-25) have shown that all countable models of DCF0 (the theory of differentially closed fields of characteristic 0) admit strong jump inversion. We establish a general result with sufficient conditions for a structure A to admit strong jump inversion. Our conditions involve an enumeration of B1-types, where these are made up of formulas that are Boolean combinations of existential formulas. Our general result applies to some familiar kinds of structures, including some classes of linear orderings and trees. We do not get the result of Downey and Jockusch for arbitrary Boolean algebras, but we do get a result for Boolean algebras with no 1-atom, with some extra information on the complexity of the isomorphism. Our general result gives the result of Marker and Miller. In order to apply our general result, we produce a computable enumeration of the types realized in models of DCF0. This also yields the fact that the saturated model of DCF0 has a decidable copy

    Titanium Dioxide Nanoparticles: Synthesis, X-Ray Line Analysis and Chemical Composition Study

    Get PDF
    TiO2 nanoparticleshave been synthesized by the sol-gel method using titanium alkoxide and isopropanolas a precursor. The structural properties and chemical composition of the TiO2 nanoparticles were studied usingX-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction.The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nanopowders. The scanning electron microscopy image shows clear TiO2 nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO2 nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO2
    • …
    corecore